1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
use crate::pbar::PBar;
use memflow::prelude::v1::*;
use rayon::prelude::*;
use rayon_tlsctx::ThreadLocalCtx;
use std::cmp::Ordering;
use std::collections::BTreeMap;
use std::ops::Bound::Included;
/// Describes pointer map state.
///
/// Pointer map stores addresses to data that contains addresses to valid memory regions.
///
/// It essentially allows to find links between memory locations.
#[derive(Default)]
pub struct PointerMap {
map: BTreeMap<Address, Address>,
inverse_map: BTreeMap<Address, Vec<Address>>,
pointers: Vec<Address>,
}
impl PointerMap {
/// Reset the pointer map state.
pub fn reset(&mut self) {
self.map.clear();
self.inverse_map.clear();
self.pointers.clear();
}
/// Create the pointer map state.
///
/// # Arguments
/// * `mem` - memory to scan for pointers in
/// * `size_addr` - size of a pointer (4 bytes on 32 bit machines, 8 bytes on 64 bit machines).
pub fn create_map(
&mut self,
proc: &mut (impl Process + MemoryView + Clone),
size_addr: usize,
) -> Result<()> {
self.reset();
// TODO: replace with VAD
let mem_map = proc.mapped_mem_range_vec(
mem::mb(16) as _,
Address::null(),
((1 as umem) << 47).into(),
);
let pb = PBar::new(
mem_map
.iter()
.map(|CTup3(_, size, _)| size.to_umem() as u64)
.sum::<u64>(),
true,
);
let ctx = ThreadLocalCtx::new_locked(move || proc.clone());
let ctx_buf = ThreadLocalCtx::new(|| vec![0; 0x1000 + size_addr - 1]);
self.map
.par_extend(mem_map.par_iter().flat_map(|&CTup3(address, size, _)| {
(0..size)
.into_iter()
.step_by(0x1000)
.par_bridge()
.filter_map(|off| {
let mut mem = unsafe { ctx.get() };
let mut buf = unsafe { ctx_buf.get() };
mem.read_raw_into(address + off, buf.as_mut_slice())
.data_part()
.ok()?;
pb.add(0x1000);
let ret = buf
.windows(size_addr)
.enumerate()
.filter_map(|(o, buf)| {
let address = address + off + o;
let mut arr = [0; 8];
// TODO: Fix for Big Endian
arr[0..buf.len()].copy_from_slice(buf);
let out_addr = Address::from(u64::from_le_bytes(arr));
if mem_map
.binary_search_by(|&CTup3(a, s, _)| {
if out_addr >= a && out_addr < a + s {
Ordering::Equal
} else {
a.cmp(&out_addr)
}
})
.is_ok()
{
Some((address, out_addr))
} else {
None
}
})
.collect::<Vec<_>>()
.into_par_iter();
Some(ret)
})
.flatten()
.collect::<Vec<_>>()
.into_par_iter()
}));
for (&k, &v) in &self.map {
self.inverse_map.entry(v).or_default().push(k);
}
self.pointers = self.map.keys().copied().collect();
pb.finish();
Ok(())
}
/// Get the forward pointer map.
pub fn map(&self) -> &BTreeMap<Address, Address> {
&self.map
}
/// Get the inverse (back) pointer map.
pub fn inverse_map(&self) -> &BTreeMap<Address, Vec<Address>> {
&self.inverse_map
}
/// Get a list of pointers.
pub fn pointers(&self) -> &Vec<Address> {
&self.pointers
}
fn walk_down_range(
&self,
addr: Address,
(lrange, urange): (usize, usize),
max_levels: usize,
level: usize,
startpoints: &[Address],
out: &mut Vec<(Address, Vec<(Address, isize)>)>,
(final_addr, tmp): (Address, &mut Vec<(Address, isize)>),
pb: &PBar,
(pb_start, pb_end): (f32, f32),
) {
let min = Address::from(addr.to_umem().saturating_sub(urange as _));
let max = Address::from(addr.to_umem().saturating_add(lrange as _));
// Find the lower bound
let idx = startpoints.binary_search(&min).unwrap_or_else(|x| x);
let mut iter = startpoints
.iter()
.skip(idx)
.copied()
.take_while(|&v| v <= max);
// Pick next match
let mut m = iter.next();
// Go through the rest
for e in iter {
let off = signed_diff(addr, e).abs();
// If abs offset is smaller, overwrite
// < biasses more towards positive end
if off < signed_diff(addr, m.unwrap()).abs() {
m = Some(e);
}
}
// Push match if found
if let Some(e) = m {
let off = signed_diff(addr, e);
let mut cloned = tmp.clone();
cloned.push((e, off));
cloned.reverse();
out.push((final_addr, cloned));
}
// Recurse downwards if possible
if level < max_levels {
let mut last = min;
for (&k, vec) in self.inverse_map.range((Included(&min), Included(&max))) {
// Calculate the starting fraction
let frac_start = (last - min) as f32 / (max - min) as f32;
let new_start = pb_start + (pb_end - pb_start) * frac_start;
// Calculate the ending fraction
let frac_end = (k - min) as f32 / (max - min) as f32;
let new_end = pb_start + (pb_end - pb_start) * frac_end;
last = k;
let off = signed_diff(addr, k);
tmp.push((k, off));
// Calculate how much space each subitem uses in the fraction
let part = (new_end - new_start) / vec.len() as f32;
for (i, &v) in vec.iter().enumerate() {
self.walk_down_range(
v,
(lrange, urange),
max_levels,
level + 1,
startpoints,
out,
(final_addr, tmp),
pb,
(
new_start + part * i as f32,
new_start + part * (i + 1) as f32,
),
);
}
tmp.pop();
if (new_end - pb_start) >= 0.00001 {
pb.set((new_end * 100000.0).round() as u64);
}
}
}
}
/// Find matches from specific entry point addresses.
///
/// # Arguments
///
/// * `range` - address bounds for memory address differences between pointers.
/// * `max_depth` - how deep to scan inside the pointer map.
/// * `search_for` - addresses to find the links for.
/// * `entry_points` - valid entry point addresses.
pub fn find_matches_addrs(
&self,
range: (usize, usize),
max_depth: usize,
search_for: &[Address],
entry_points: &[Address],
) -> Vec<(Address, Vec<(Address, isize)>)> {
let mut matches = vec![];
let pb = PBar::new(100000, false);
let part = 1.0 / search_for.len() as f32;
matches.par_extend(search_for.par_iter().enumerate().flat_map(|(i, &m)| {
let mut matches = vec![];
self.walk_down_range(
m,
range,
max_depth,
1,
entry_points,
&mut matches,
(m, &mut vec![]),
&pb,
(part * i as f32, part * (i + 1) as f32),
);
pb.set((100000.0 * part * (i + 1) as f32).round() as u64);
matches.into_par_iter()
}));
pb.finish();
matches
}
/// Find matches from all pointers.
///
/// # Arguments
///
/// * `range` - address bounds for memory address differences between pointers.
/// * `max_depth` - how deep to scan inside the pointer map.
/// * `search_for` - addresses to find the links for.
pub fn find_matches(
&self,
range: (usize, usize),
max_depth: usize,
search_for: &[Address],
) -> Vec<(Address, Vec<(Address, isize)>)> {
self.find_matches_addrs(range, max_depth, search_for, &self.pointers)
}
}
pub fn signed_diff(a: Address, b: Address) -> isize {
a.to_umem()
.checked_sub(b.to_umem())
.map(|a| a as isize)
.unwrap_or_else(|| -((b - a) as isize))
}