1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
// Copyright (C) 2022-2023 Parity Technologies (UK) Ltd. (admin@parity.io)
// This file is a part of the scale-value crate.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Indexing into Value's to access things. We can't use the `Index` trait,
// since it returns references, and we can't necessarily give back a reference
// (`serde_json::Value` uses a statically initialised value to give back a ref
// to in these cases, but we have a generic `Ctx` and can't do that ourselves).
use super::{Composite, Value, ValueDef, Variant};
use crate::prelude::*;
/// This trait allows indexing into [`Value`]s (and options of [`Value`]s)
/// using the [`At::at()`] function. It's a little like Rust's [`::std::ops::Index`]
/// trait, but adapted so that we can return and work with optionals.
///
/// Indexing into a [`Value`] never panics; instead it will return `None` if a
/// value at the given location cannot be found.
///
/// # Example
///
/// ```
/// use scale_value::{ Value, At };
///
/// let val = Value::named_composite([
/// ("hello", Value::unnamed_composite([
/// Value::u128(1),
/// Value::bool(true),
/// Value::named_composite([
/// ("wibble", Value::bool(false)),
/// ("foo", Value::named_composite([
/// ("bar", Value::u128(123))
/// ]))
/// ])
/// ]))
/// ]);
///
/// // Use `at` to access nested values:
/// assert_eq!(val.at("hello").at(0), Some(&Value::u128(1)));
/// assert_eq!(val.at("hello").at(1), Some(&Value::bool(true)));
/// assert_eq!(val.at("hello").at(2).at("wibble"), Some(&Value::bool(false)));
/// assert_eq!(val.at("hello").at(2).at("foo").at("bar"), Some(&Value::u128(123)));
///
/// // If the value doesn't exist, None will be returned:
/// assert_eq!(val.at("wibble").at(3), None);
/// assert_eq!(val.at("wibble").at("wobble").at("nope"), None);
/// ```
pub trait At<Ctx>: private::Sealed {
/// Index into a value, returning a reference to the value if one
/// exists, or [`None`] if not.
fn at<L: AsLocation>(&self, loc: L) -> Option<&Value<Ctx>>;
}
// Prevent users from implementing the At trait.
mod private {
use super::*;
pub trait Sealed {}
impl<Ctx> Sealed for Value<Ctx> {}
impl<Ctx> Sealed for Composite<Ctx> {}
impl<Ctx> Sealed for Variant<Ctx> {}
impl<T: Sealed> Sealed for Option<&T> {}
}
impl<Ctx> At<Ctx> for Composite<Ctx> {
fn at<L: AsLocation>(&self, loc: L) -> Option<&Value<Ctx>> {
match loc.as_location().inner {
LocationInner::Str(s) => match self {
Composite::Named(vals) => {
vals.iter().find_map(|(n, v)| if s == n { Some(v) } else { None })
}
_ => None,
},
LocationInner::Usize(n) => match self {
Composite::Named(vals) => {
let val = vals.get(n);
val.map(|v| &v.1)
}
Composite::Unnamed(vals) => vals.get(n),
},
}
}
}
impl<Ctx> At<Ctx> for Variant<Ctx> {
fn at<L: AsLocation>(&self, loc: L) -> Option<&Value<Ctx>> {
self.values.at(loc)
}
}
impl<Ctx> At<Ctx> for Value<Ctx> {
fn at<L: AsLocation>(&self, loc: L) -> Option<&Value<Ctx>> {
match &self.value {
ValueDef::Composite(c) => c.at(loc),
ValueDef::Variant(v) => v.at(loc),
_ => None,
}
}
}
impl<Ctx, T: At<Ctx>> At<Ctx> for Option<&T> {
fn at<L: AsLocation>(&self, loc: L) -> Option<&Value<Ctx>> {
self.as_ref().and_then(|v| v.at(loc))
}
}
/// Types which can be used as a lookup location with [`At::at`]
/// implement this trait.
///
/// Users cannot implement this as the [`Location`] type internals
/// are opaque and subject to change.
pub trait AsLocation {
fn as_location(&self) -> Location<'_>;
}
impl AsLocation for usize {
fn as_location(&self) -> Location<'_> {
Location { inner: LocationInner::Usize(*self) }
}
}
impl AsLocation for &str {
fn as_location(&self) -> Location<'_> {
Location { inner: LocationInner::Str(self) }
}
}
impl AsLocation for String {
fn as_location(&self) -> Location<'_> {
Location { inner: LocationInner::Str(self) }
}
}
impl<T: AsLocation> AsLocation for &T {
fn as_location(&self) -> Location<'_> {
(*self).as_location()
}
}
/// A struct representing a location to access in a [`Value`].
#[derive(Copy, Clone)]
pub struct Location<'a> {
inner: LocationInner<'a>,
}
#[derive(Copy, Clone)]
enum LocationInner<'a> {
Usize(usize),
Str(&'a str),
}
#[cfg(test)]
mod test {
use crate::value;
use super::*;
// This is basically the doc example with a little extra.
#[test]
fn nested_accessing() {
let val = value!({hello: (1u32, true, { wibble: false, foo: {bar: 123u32}})});
assert_eq!(val.at("hello").at(0), Some(&Value::u128(1)));
assert_eq!(val.at("hello").at(1), Some(&Value::bool(true)));
assert_eq!(val.at("hello").at(2).at("wibble"), Some(&Value::bool(false)));
assert_eq!(val.at("hello").at(2).at("foo").at("bar"), Some(&Value::u128(123)));
assert_eq!(val.at("wibble").at(3), None);
assert_eq!(val.at("wibble").at("wobble").at("nope"), None);
// Strings can be used:
assert_eq!(val.at("hello".to_string()).at(0), Some(&Value::u128(1)));
// References to valid locations are fine too:
{
assert_eq!(val.at("hello").at(0), Some(&Value::u128(1)));
}
}
#[test]
fn accessing_variants() {
let val = value!(TheVariant { foo: 12345u32, bar: 'c' });
assert_eq!(val.at("foo").unwrap().as_u128().unwrap(), 12345);
assert_eq!(val.at("bar").unwrap().as_char().unwrap(), 'c');
let val = value!(TheVariant(12345u32, 'c'));
assert_eq!(val.at(0).unwrap().as_u128().unwrap(), 12345);
assert_eq!(val.at(1).unwrap().as_char().unwrap(), 'c');
// We can use `at()` on the variant directly, too:
let val =
Variant::named_fields("TheVariant", [("foo", value!(12345u32)), ("bar", value!('c'))]);
assert_eq!(val.at("foo").unwrap().as_u128().unwrap(), 12345);
assert_eq!(val.at("bar").unwrap().as_char().unwrap(), 'c');
let val = Variant::unnamed_fields("TheVariant", [value!(12345u32), value!('c')]);
assert_eq!(val.at(0).unwrap().as_u128().unwrap(), 12345);
assert_eq!(val.at(1).unwrap().as_char().unwrap(), 'c');
}
#[test]
fn accessing_composites() {
// We already test accessing composite Values. This also checks that `at` works on
// the Composite type, too..
let val = Composite::named([("foo", value!(12345u32)), ("bar", value!('c'))]);
assert_eq!(val.at("foo").unwrap().as_u128().unwrap(), 12345);
assert_eq!(val.at("bar").unwrap().as_char().unwrap(), 'c');
let val = Composite::unnamed([value!(12345u32), value!('c')]);
assert_eq!(val.at(0).unwrap().as_u128().unwrap(), 12345);
assert_eq!(val.at(1).unwrap().as_char().unwrap(), 'c');
}
}