1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
// Copyright (C) 2022-2023 Parity Technologies (UK) Ltd. (admin@parity.io)
// This file is a part of the scale-value crate.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use crate::prelude::*;
use either::Either;
// We use this to represent BitSequence values, so expose it here.
pub use scale_bits::Bits as BitSequence;
/// [`Value`] holds a representation of some value that has been decoded, as well as some arbitrary context.
///
/// Not all SCALE encoded types have an similar-named value; for instance, the values corresponding to
/// sequence, array and composite types can all be represented with [`Composite`]. Only enough information
/// is preserved here to to be able to encode and decode SCALE bytes with a known type to and from [`Value`]s
/// losslessly.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Value<T = ()> {
/// The shape and associated data for this Value
pub value: ValueDef<T>,
/// Some additional arbitrary context that can be associated with a value.
pub context: T,
}
impl Value<()> {
/// Construct a named composite type from any type which produces a tuple of keys and values
/// when iterated over.
pub fn named_composite<S, Vals>(vals: Vals) -> Self
where
S: Into<String>,
Vals: IntoIterator<Item = (S, Value<()>)>,
{
Value { value: ValueDef::Composite(Composite::named(vals)), context: () }
}
/// Construct an unnamed composite type from any type which produces values
/// when iterated over.
pub fn unnamed_composite<Vals>(vals: Vals) -> Self
where
Vals: IntoIterator<Item = Value<()>>,
{
Value { value: ValueDef::Composite(Composite::unnamed(vals)), context: () }
}
/// Create a new variant value without additional context.
pub fn variant<S: Into<String>>(name: S, values: Composite<()>) -> Value<()> {
Value { value: ValueDef::Variant(Variant { name: name.into(), values }), context: () }
}
/// Create a new variant value with named fields and without additional context.
pub fn named_variant<S, F, Vals>(name: S, fields: Vals) -> Value<()>
where
S: Into<String>,
F: Into<String>,
Vals: IntoIterator<Item = (F, Value<()>)>,
{
Value { value: ValueDef::Variant(Variant::named_fields(name, fields)), context: () }
}
/// Create a new variant value with tuple-like fields and without additional context.
pub fn unnamed_variant<S, Vals>(name: S, fields: Vals) -> Value<()>
where
S: Into<String>,
Vals: IntoIterator<Item = Value<()>>,
{
Value { value: ValueDef::Variant(Variant::unnamed_fields(name, fields)), context: () }
}
/// Create a new bit sequence value without additional context.
pub fn bit_sequence(bits: BitSequence) -> Value<()> {
Value { value: ValueDef::BitSequence(bits), context: () }
}
/// Create a new primitive value without additional context.
pub fn primitive(primitive: Primitive) -> Value<()> {
Value { value: ValueDef::Primitive(primitive), context: () }
}
/// Create a new string value without additional context.
pub fn string<S: Into<String>>(val: S) -> Value<()> {
Value { value: ValueDef::Primitive(Primitive::String(val.into())), context: () }
}
/// Create a new boolean value without additional context.
pub fn bool(val: bool) -> Value<()> {
Value { value: ValueDef::Primitive(Primitive::Bool(val)), context: () }
}
/// Create a new char without additional context.
pub fn char(val: char) -> Value<()> {
Value { value: ValueDef::Primitive(Primitive::Char(val)), context: () }
}
/// Create a new unsigned integer without additional context.
pub fn u128(val: u128) -> Value<()> {
Value { value: ValueDef::Primitive(Primitive::u128(val)), context: () }
}
/// Create a new signed integer without additional context.
pub fn i128(val: i128) -> Value<()> {
Value { value: ValueDef::Primitive(Primitive::i128(val)), context: () }
}
/// Create a new Value from a set of bytes; useful for converting things like AccountIds.
pub fn from_bytes(bytes: impl AsRef<[u8]>) -> Value<()> {
let vals: Vec<_> = bytes.as_ref().iter().map(|&b| Value::u128(b as u128)).collect();
Value::unnamed_composite(vals)
}
}
impl Value<()> {
/// Create a new value with no associated context.
pub fn without_context(value: ValueDef<()>) -> Value<()> {
Value { value, context: () }
}
}
impl<T> Value<T> {
/// Create a new value with some associated context.
pub fn with_context(value: ValueDef<T>, context: T) -> Value<T> {
Value { value, context }
}
/// Remove the context.
pub fn remove_context(self) -> Value<()> {
self.map_context(|_| ())
}
/// Map the context to some different type.
pub fn map_context<F, U>(self, mut f: F) -> Value<U>
where
F: Clone + FnMut(T) -> U,
{
Value { context: f(self.context), value: self.value.map_context(f) }
}
/// If the value is a boolean value, return it.
pub fn as_bool(&self) -> Option<bool> {
match &self.value {
ValueDef::Primitive(p) => p.as_bool(),
_ => None,
}
}
/// If the value is a char, return it.
pub fn as_char(&self) -> Option<char> {
match &self.value {
ValueDef::Primitive(p) => p.as_char(),
_ => None,
}
}
/// If the value is a u128, return it.
pub fn as_u128(&self) -> Option<u128> {
match &self.value {
ValueDef::Primitive(p) => p.as_u128(),
_ => None,
}
}
/// If the value is an i128, return it.
pub fn as_i128(&self) -> Option<i128> {
match &self.value {
ValueDef::Primitive(p) => p.as_i128(),
_ => None,
}
}
/// If the value is a string, return it.
pub fn as_str(&self) -> Option<&str> {
match &self.value {
ValueDef::Primitive(p) => p.as_str(),
_ => None,
}
}
}
/// The underlying shape of a given value.
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum ValueDef<T> {
/// A named or unnamed struct-like, array-like or tuple-like set of values.
Composite(Composite<T>),
/// An enum variant.
Variant(Variant<T>),
/// A sequence of bits.
BitSequence(BitSequence),
/// Any of the primitive values we can have.
Primitive(Primitive),
}
impl<T> ValueDef<T> {
/// Map the context to some different type.
pub fn map_context<F, U>(self, f: F) -> ValueDef<U>
where
F: Clone + FnMut(T) -> U,
{
match self {
ValueDef::Composite(val) => ValueDef::Composite(val.map_context(f)),
ValueDef::Variant(val) => ValueDef::Variant(val.map_context(f)),
ValueDef::BitSequence(val) => ValueDef::BitSequence(val),
ValueDef::Primitive(val) => ValueDef::Primitive(val),
}
}
}
impl<T> From<BitSequence> for ValueDef<T> {
fn from(val: BitSequence) -> Self {
ValueDef::BitSequence(val)
}
}
impl From<BitSequence> for Value<()> {
fn from(val: BitSequence) -> Self {
Value::without_context(val.into())
}
}
/// A named or unnamed struct-like, array-like or tuple-like set of values.
/// This is used to represent a range of composite values on their own, or
/// as values for a specific [`Variant`].
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum Composite<T> {
/// Eg `{ foo: 2, bar: false }`
Named(Vec<(String, Value<T>)>),
/// Eg `(2, false)`
Unnamed(Vec<Value<T>>),
}
impl<T> Composite<T> {
/// Construct a named composite type from any type which produces a tuple of keys and values
/// when iterated over.
pub fn named<S: Into<String>, Vals: IntoIterator<Item = (S, Value<T>)>>(vals: Vals) -> Self {
Composite::Named(vals.into_iter().map(|(n, v)| (n.into(), v)).collect())
}
/// Construct an unnamed composite type from any type which produces values
/// when iterated over.
pub fn unnamed<Vals: IntoIterator<Item = Value<T>>>(vals: Vals) -> Self {
Composite::Unnamed(vals.into_iter().collect())
}
/// Return the number of values stored in this composite type.
pub fn len(&self) -> usize {
match self {
Composite::Named(values) => values.len(),
Composite::Unnamed(values) => values.len(),
}
}
/// Is the composite type empty?
pub fn is_empty(&self) -> bool {
match self {
Composite::Named(values) => values.is_empty(),
Composite::Unnamed(values) => values.is_empty(),
}
}
/// Iterate over the values stored in this composite type.
pub fn values(&self) -> impl ExactSizeIterator<Item = &Value<T>> {
match self {
Composite::Named(values) => Either::Left(values.iter().map(|(_k, v)| v)),
Composite::Unnamed(values) => Either::Right(values.iter()),
}
}
/// Iterate over the values stored in this composite type.
pub fn into_values(self) -> impl ExactSizeIterator<Item = Value<T>> {
match self {
Composite::Named(values) => Either::Left(values.into_iter().map(|(_k, v)| v)),
Composite::Unnamed(values) => Either::Right(values.into_iter()),
}
}
/// Map the context to some different type.
pub fn map_context<F, U>(self, f: F) -> Composite<U>
where
F: Clone + FnMut(T) -> U,
{
match self {
Composite::Named(values) => {
// Note: Optimally I'd pass `&mut f` into each iteration to avoid cloning,
// but this leads to a type recusion error because F becomes `&mut F`, which can
// (at type level) recurse here again and become `&mut &mut F` and so on. Since
// that's no good; just require `Clone` to avoid altering the type.
let vals =
values.into_iter().map(move |(k, v)| (k, v.map_context(f.clone()))).collect();
Composite::Named(vals)
}
Composite::Unnamed(values) => {
let vals = values.into_iter().map(move |v| v.map_context(f.clone())).collect();
Composite::Unnamed(vals)
}
}
}
}
impl<V: Into<Value<()>>> From<Vec<V>> for Composite<()> {
fn from(vals: Vec<V>) -> Self {
let vals = vals.into_iter().map(|v| v.into()).collect();
Composite::Unnamed(vals)
}
}
impl<V: Into<Value<()>>> From<Vec<V>> for ValueDef<()> {
fn from(vals: Vec<V>) -> Self {
ValueDef::Composite(vals.into())
}
}
impl<V: Into<Value<()>>> From<Vec<V>> for Value<()> {
fn from(vals: Vec<V>) -> Self {
Value::without_context(vals.into())
}
}
impl<K: Into<String>, V: Into<Value<()>>> From<Vec<(K, V)>> for Composite<()> {
fn from(vals: Vec<(K, V)>) -> Self {
let vals = vals.into_iter().map(|(k, v)| (k.into(), v.into())).collect();
Composite::Named(vals)
}
}
impl<K: Into<String>, V: Into<Value<()>>> From<Vec<(K, V)>> for ValueDef<()> {
fn from(vals: Vec<(K, V)>) -> Self {
ValueDef::Composite(vals.into())
}
}
impl<K: Into<String>, V: Into<Value<()>>> From<Vec<(K, V)>> for Value<()> {
fn from(vals: Vec<(K, V)>) -> Self {
Value::without_context(vals.into())
}
}
impl<T> From<Composite<T>> for ValueDef<T> {
fn from(val: Composite<T>) -> Self {
ValueDef::Composite(val)
}
}
impl From<Composite<()>> for Value<()> {
fn from(val: Composite<()>) -> Self {
Value::without_context(ValueDef::Composite(val))
}
}
/// This represents the value of a specific variant from an enum, and contains
/// the name of the variant, and the named/unnamed values associated with it.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct Variant<T> {
/// The name of the variant.
pub name: String,
/// Values for each of the named or unnamed fields associated with this variant.
pub values: Composite<T>,
}
impl<T> Variant<T> {
/// Construct a variant with named fields.
pub fn named_fields<S, K, Vals>(name: S, fields: Vals) -> Variant<T>
where
S: Into<String>,
K: Into<String>,
Vals: IntoIterator<Item = (K, Value<T>)>,
{
Variant { name: name.into(), values: Composite::named(fields) }
}
/// Construct a variant with tuple-like fields.
pub fn unnamed_fields<S, Vals>(name: S, fields: Vals) -> Variant<T>
where
S: Into<String>,
Vals: IntoIterator<Item = Value<T>>,
{
Variant { name: name.into(), values: Composite::unnamed(fields) }
}
/// Map the context to some different type.
pub fn map_context<F, U>(self, f: F) -> Variant<U>
where
F: Clone + FnMut(T) -> U,
{
Variant { name: self.name, values: self.values.map_context(f) }
}
}
impl<T> From<Variant<T>> for ValueDef<T> {
fn from(val: Variant<T>) -> Self {
ValueDef::Variant(val)
}
}
impl From<Variant<()>> for Value<()> {
fn from(val: Variant<()>) -> Self {
Value::without_context(ValueDef::Variant(val))
}
}
/// A "primitive" value (this includes strings).
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum Primitive {
/// A boolean value.
Bool(bool),
/// A single character.
Char(char),
/// A string.
String(String),
/// A u128 value.
U128(u128),
/// An i128 value.
I128(i128),
/// An unsigned 256 bit number (internally represented as a 32 byte array).
U256([u8; 32]),
/// A signed 256 bit number (internally represented as a 32 byte array).
I256([u8; 32]),
}
impl Primitive {
/// Create a new unsigned integer without additional context.
pub fn u128(val: u128) -> Primitive {
Primitive::U128(val)
}
/// Create a new signed integer without additional context.
pub fn i128(val: i128) -> Primitive {
Primitive::I128(val)
}
/// If the primitive type is a boolean value, return it.
pub fn as_bool(&self) -> Option<bool> {
match self {
Primitive::Bool(b) => Some(*b),
_ => None,
}
}
/// If the primitive type is a char, return it.
pub fn as_char(&self) -> Option<char> {
match self {
Primitive::Char(c) => Some(*c),
_ => None,
}
}
/// If the primitive type is a u128, return it.
pub fn as_u128(&self) -> Option<u128> {
match self {
Primitive::U128(n) => Some(*n),
_ => None,
}
}
/// If the primitive type is an i128, return it.
pub fn as_i128(&self) -> Option<i128> {
match self {
Primitive::I128(n) => Some(*n),
_ => None,
}
}
/// If the primitive type is a string, return it.
pub fn as_str(&self) -> Option<&str> {
match self {
Primitive::String(s) => Some(&**s),
_ => None,
}
}
}
impl<T> From<Primitive> for ValueDef<T> {
fn from(val: Primitive) -> Self {
ValueDef::Primitive(val)
}
}
macro_rules! impl_primitive_type {
($($variant:ident($ty:ty as $castty:ty),)*) => {$(
impl From<$ty> for Primitive {
fn from(val: $ty) -> Self {
Primitive::$variant(val as $castty)
}
}
impl<T> From<$ty> for ValueDef<T> {
fn from(val: $ty) -> Self {
ValueDef::Primitive(val.into())
}
}
impl From<$ty> for Value<()> {
fn from(val: $ty) -> Self {
Value::without_context(val.into())
}
}
)*}
}
impl_primitive_type!(
Bool(bool as bool),
Char(char as char),
String(String as String),
U128(u128 as u128),
U128(u64 as u128),
U128(usize as u128),
U128(u32 as u128),
U128(u16 as u128),
U128(u8 as u128),
I128(i128 as i128),
I128(i64 as i128),
I128(isize as i128),
I128(i32 as i128),
I128(i16 as i128),
I128(i8 as i128),
);
// note regarding impl From<AsRef<str>>:
// a nicer generic `impl<K: Into<String>> From<K>` or `impl<K: AsRef<str>> From<K>` verson is not possible because it conflicts with the From<Bits> implementation above.
impl From<&str> for Primitive {
fn from(val: &str) -> Self {
Primitive::String(val.to_string())
}
}
impl<T> From<&str> for ValueDef<T> {
fn from(val: &str) -> Self {
ValueDef::Primitive(val.into())
}
}
impl From<&str> for Value<()> {
fn from(val: &str) -> Self {
Value::without_context(val.into())
}
}