1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
use self::generics_list::GenericsList;
use scale_info::{form::PortableForm, Field, PortableRegistry, Type, TypeDef};
use std::collections::{HashMap, HashSet};
use crate::TypegenError;
/// Converts a [`scale_info::Type`] into a [`syn::TypePath`].
pub fn syn_type_path(ty: &Type<PortableForm>) -> Result<syn::TypePath, TypegenError> {
let joined_path = ty.path.segments.join("::");
let ty_path: syn::TypePath = syn::parse_str(&joined_path)?;
Ok(ty_path)
}
/// Deduplicates type paths in the provided Registry.
pub fn ensure_unique_type_paths(types: &mut PortableRegistry) {
let mut types_with_same_type_path_grouped_by_shape = HashMap::<&[String], Vec<Vec<u32>>>::new();
// First, group types if they are similar (same path, same shape).
for (ty_idx, ty) in types.types.iter().enumerate() {
// We use the index of the type in the types registry instead of `ty.id`. The two
// _should_ be identical, but prior to `scale-info` 2.11.1 they sometimes weren't
// when `registry.retain()` was used, and so to avoid older metadata files breaking
// things, let's stick to using the index for a while:
let ty_idx = ty_idx as u32;
let ty = &ty.ty;
// Ignore types without a path (i.e prelude types).
if ty.path.namespace().is_empty() {
continue;
};
// get groups that share this path already, if any.
let groups_with_same_path = types_with_same_type_path_grouped_by_shape
.entry(&ty.path.segments)
.or_default();
// Compare existing groups to check which to add our type ID to.
let mut added_to_existing_group = false;
for group in groups_with_same_path.iter_mut() {
let other_ty_in_group_idx = group[0]; // all types in group are same shape; just check any one of them.
if types_equal(ty_idx, other_ty_in_group_idx, types) {
group.push(ty_idx);
added_to_existing_group = true;
break;
}
}
// We didn't find a matching group, so add it to a new one.
if !added_to_existing_group {
groups_with_same_path.push(vec![ty_idx])
}
}
// Now, rename types as needed based on these groups.
let groups_that_need_renaming = types_with_same_type_path_grouped_by_shape
.into_values()
.filter(|g| g.len() > 1)
.collect::<Vec<_>>(); // Collect necessary because otherwise types is borrowed immutably and cannot be modified.
for groups_with_same_path in groups_that_need_renaming {
let mut n = 1;
for group_with_same_shape in groups_with_same_path {
for ty_id in group_with_same_shape {
let ty = types
.types
.get_mut(ty_id as usize)
.expect("type is present (2); qed;");
let name = ty.ty.path.segments.last_mut().expect("This is only empty for builtin types, that are filtered out with namespace().is_empty() above; qed;");
*name = format!("{name}{n}"); // e.g. Header1, Header2, Header3, ...
}
n += 1;
}
}
}
/// This attempts to check whether two types are equal in terms of their shape.
/// In other words: should we de-duplicate these types during codegen.
///
/// The basic algorithm here is:
/// - If type IDs match, they are the same.
/// - If type IDs can be explained by the same generic parameter, they are the same.
/// - If type paths or generic names don't match, they are different.
/// - If the corresponding TypeDefs (shape of type) is different, they are different.
/// - Else, recurse through any contained type IDs and start from the top.
pub(crate) fn types_equal(a: u32, b: u32, types: &PortableRegistry) -> bool {
let mut a_visited = HashSet::new();
let mut b_visited = HashSet::new();
types_equal_inner(
a,
&GenericsList::empty(),
&mut a_visited,
b,
&GenericsList::empty(),
&mut b_visited,
types,
)
}
// Panics if the given type ID is not found in the registry.
fn types_equal_inner(
a: u32,
a_parent_params: &GenericsList,
a_visited: &mut HashSet<u32>,
b: u32,
b_parent_params: &GenericsList,
b_visited: &mut HashSet<u32>,
types: &PortableRegistry,
) -> bool {
// IDs are the same; types must be identical!
if a == b {
return true;
}
// Make note of these IDs in case we recurse and see them again.
let seen_a = !a_visited.insert(a);
let seen_b = !b_visited.insert(b);
// One type is recursive and the other isn't; they are different.
// If neither type is recursive, we keep checking.
if seen_a != seen_b {
return false;
}
// Both types are recursive, and they look the same based on the above,
// so assume all is well, since we've already checked other things in prev recursion.
if seen_a && seen_b {
return true;
}
// Make note of whether these IDs (might) correspond to any specific generic.
let a_generic_idx = a_parent_params.index_for_type_id(a);
let b_generic_idx = b_parent_params.index_for_type_id(b);
// If both IDs map to same generic param, then we'll assume equal. If they don't
// then we need to keep checking other properties (eg Vec<bool> and Vec<u8> will have
// different type IDs but may be the same type if the bool+u8 line up to generic params).
if let (Some(a_idx), Some(b_idx)) = (a_generic_idx, b_generic_idx) {
if a_idx == b_idx {
return true;
}
}
let a_ty = types.resolve(a).expect("type a should exist in registry");
let b_ty = types.resolve(b).expect("type b should exist in registry");
// Paths differ; types won't be equal then!
if a_ty.path.segments != b_ty.path.segments {
return false;
}
// Names of type params don't line up, so different then!
if a_ty
.type_params
.iter()
.zip(&b_ty.type_params)
.any(|(a, b)| a.name != b.name)
{
return false;
}
// We'll lazily extend our type params only if the shapes match.
let calc_params = || {
let a_params = a_parent_params.extend(&a_ty.type_params);
let b_params = b_parent_params.extend(&b_ty.type_params);
(a_params, b_params)
};
// Capture a few variables to avoid some repetition later when we recurse.
let mut types_equal_recurse =
|a: u32, a_params: &GenericsList, b: u32, b_params: &GenericsList| -> bool {
types_equal_inner(a, a_params, a_visited, b, b_params, b_visited, types)
};
// Check that all of the fields of some type are equal.
#[rustfmt::skip]
let mut fields_equal = |
a: &[Field<PortableForm>],
a_params: &GenericsList,
b: &[Field<PortableForm>],
b_params: &GenericsList
| -> bool {
if a.len() != b.len() {
return false;
}
a.iter().zip(b.iter()).all(|(a, b)| {
a.name == b.name
&& a.type_name == b.type_name
&& types_equal_recurse(a.ty.id, a_params, b.ty.id, b_params)
})
};
// Check that the shape of the types and contents are equal.
match (&a_ty.type_def, &b_ty.type_def) {
(TypeDef::Composite(a), TypeDef::Composite(b)) => {
let (a_params, b_params) = calc_params();
fields_equal(&a.fields, &a_params, &b.fields, &b_params)
}
(TypeDef::Variant(a), TypeDef::Variant(b)) => {
let (a_params, b_params) = calc_params();
a.variants.len() == b.variants.len()
&& a.variants.iter().zip(b.variants.iter()).all(|(a, b)| {
a.name == b.name && fields_equal(&a.fields, &a_params, &b.fields, &b_params)
})
}
(TypeDef::Sequence(a), TypeDef::Sequence(b)) => {
let (a_params, b_params) = calc_params();
types_equal_recurse(a.type_param.id, &a_params, b.type_param.id, &b_params)
}
(TypeDef::Array(a), TypeDef::Array(b)) => {
let (a_params, b_params) = calc_params();
a.len == b.len
&& types_equal_recurse(a.type_param.id, &a_params, b.type_param.id, &b_params)
}
(TypeDef::Tuple(a), TypeDef::Tuple(b)) => {
let (a_params, b_params) = calc_params();
a.fields.len() == b.fields.len()
&& a.fields
.iter()
.zip(b.fields.iter())
.all(|(a, b)| types_equal_recurse(a.id, &a_params, b.id, &b_params))
}
(TypeDef::Primitive(a), TypeDef::Primitive(b)) => a == b,
(TypeDef::Compact(a), TypeDef::Compact(b)) => {
let (a_params, b_params) = calc_params();
types_equal_recurse(a.type_param.id, &a_params, b.type_param.id, &b_params)
}
(TypeDef::BitSequence(a), scale_info::TypeDef::BitSequence(b)) => {
let (a_params, b_params) = calc_params();
let order_equal = types_equal_recurse(
a.bit_order_type.id,
&a_params,
b.bit_order_type.id,
&b_params,
);
let store_equal = types_equal_recurse(
a.bit_store_type.id,
&a_params,
b.bit_store_type.id,
&b_params,
);
order_equal && store_equal
}
// Type defs don't match; types aren't the same!
_ => false,
}
}
/// Just a small helper for the [`types_equal_inner`] function, to track where generic params
/// are in order to see whether different type IDs may actually be represented by the same generics.
mod generics_list {
use scale_info::{form::PortableForm, TypeParameter};
use std::rc::Rc;
/// A list of generics by type ID. For a given type ID, we'll either
/// return the index of the first generic param we find that matches it,
/// or None. We can extend this list with more generics as we go.
#[derive(Clone, Debug)]
pub struct GenericsList {
inner: Rc<GenericsListInner>,
}
#[derive(Clone, Debug)]
struct GenericsListInner {
previous: Option<GenericsList>,
start_idx: usize,
generics_by_id: Vec<u32>,
}
impl GenericsList {
/// Return the unique index of a generic in the list, or None if not found
pub fn index_for_type_id(&self, type_id: u32) -> Option<usize> {
let maybe_index = self
.inner
.generics_by_id
.iter()
.enumerate()
.find(|(_, id)| **id == type_id)
.map(|(index, _)| self.inner.start_idx + index);
// if index isn't found here, go back to the previous list and try again.
maybe_index.or_else(|| {
self.inner
.previous
.as_ref()
.and_then(|prev| prev.index_for_type_id(type_id))
})
}
/// Create an empty list.
pub fn empty() -> Self {
Self::new_inner(None, &[])
}
/// Extend this list with more params.
pub fn extend(&self, params: &[TypeParameter<PortableForm>]) -> Self {
Self::new_inner(Some(self.clone()), params)
}
fn new_inner(
maybe_self: Option<GenericsList>,
params: &[TypeParameter<PortableForm>],
) -> Self {
let generics_by_id = params.iter().filter_map(|p| p.ty.map(|ty| ty.id)).collect();
let start_idx = match &maybe_self {
Some(list) => list.inner.start_idx + list.inner.generics_by_id.len(),
None => 0,
};
GenericsList {
inner: Rc::new(GenericsListInner {
previous: maybe_self,
start_idx,
generics_by_id,
}),
}
}
}
}
#[cfg(test)]
mod tests {
use crate::typegen::ir::ToTokensWithSettings;
use pretty_assertions::assert_eq;
use super::*;
use quote::quote;
use scale_info::{
meta_type, Field, Path, PortableRegistry, TypeDef, TypeDefComposite, TypeInfo,
TypeParameter,
};
#[test]
fn ensure_unique_type_paths_test() {
macro_rules! foo {
($ty:ident, $prim:ident ) => {
struct $ty;
impl scale_info::TypeInfo for $ty {
type Identity = Self;
fn type_info() -> scale_info::Type {
scale_info::Type {
path: Path::new("Foo", "my::module"),
type_params: vec![],
type_def: scale_info::TypeDef::Primitive(
scale_info::TypeDefPrimitive::$prim,
),
docs: vec![],
}
}
}
};
}
foo!(Foo1, Bool);
foo!(Foo2, Bool);
foo!(Foo3, U32);
foo!(Foo4, U128);
foo!(Foo5, U128);
foo!(Foo6, U128);
let mut registry = scale_info::Registry::new();
let id_1 = registry.register_type(&meta_type::<Foo1>()).id;
let id_2 = registry.register_type(&meta_type::<Foo2>()).id;
let id_3 = registry.register_type(&meta_type::<Foo3>()).id;
let id_4 = registry.register_type(&meta_type::<Foo4>()).id;
let id_5 = registry.register_type(&meta_type::<Foo5>()).id;
let id_6 = registry.register_type(&meta_type::<Foo6>()).id;
let mut registry = PortableRegistry::from(registry);
// before:
let ident = |id: u32| registry.resolve(id).unwrap().path.ident().unwrap();
assert_eq!(ident(id_1), "Foo");
assert_eq!(ident(id_2), "Foo");
assert_eq!(ident(id_3), "Foo");
assert_eq!(ident(id_4), "Foo");
assert_eq!(ident(id_5), "Foo");
assert_eq!(ident(id_6), "Foo");
// after:
ensure_unique_type_paths(&mut registry);
let ident = |id: u32| registry.resolve(id).unwrap().path.ident().unwrap();
assert_eq!(ident(id_1), "Foo1");
assert_eq!(ident(id_2), "Foo1");
assert_eq!(ident(id_3), "Foo2");
assert_eq!(ident(id_4), "Foo3");
assert_eq!(ident(id_5), "Foo3");
assert_eq!(ident(id_6), "Foo3");
}
#[test]
fn types_equal_recursing_test() {
#[derive(TypeInfo)]
struct Foo<T> {
_inner: T,
}
macro_rules! nested_type {
($ty:ident, $generic:ty, $inner:ty) => {
struct $ty;
impl scale_info::TypeInfo for $ty {
type Identity = Self;
fn type_info() -> scale_info::Type {
scale_info::Type {
path: Path::new("NestedType", "my::module"),
type_params: vec![TypeParameter::new(
"T",
Some(meta_type::<$generic>()),
)],
type_def: TypeDef::Composite(TypeDefComposite::new([Field::new(
None,
meta_type::<$inner>(),
None,
Vec::new(),
)])),
docs: vec![],
}
}
}
};
}
// A and B are the same because generics explain the param difference.
//
//NestedType<T = u32>(u32)
//NestedType<T = bool>(bool)
nested_type!(A, u32, u32);
nested_type!(B, bool, bool);
// As above, but another layer of nesting before generic param used.
//
//NestedType<T = u32>(Vec<u32>)
//NestedType<T = bool>(Vec<bool>)
nested_type!(C, bool, Vec<bool>);
nested_type!(D, u32, Vec<u32>);
// A third layer of nesting just to really check the recursion.
//
//NestedType<T = u32>(Vec<Foo<u32>>)
//NestedType<T = bool>(Vec<Foo<bool>>)
nested_type!(E, bool, Vec<Foo<bool>>);
nested_type!(F, u32, Vec<Foo<u32>>);
let mut registry = scale_info::Registry::new();
let id_a = registry.register_type(&meta_type::<A>()).id;
let id_b = registry.register_type(&meta_type::<B>()).id;
let id_c = registry.register_type(&meta_type::<C>()).id;
let id_d = registry.register_type(&meta_type::<D>()).id;
let id_e = registry.register_type(&meta_type::<E>()).id;
let id_f = registry.register_type(&meta_type::<F>()).id;
let mut registry = PortableRegistry::from(registry);
// Despite how many layers of nesting, we identify that the generic
// param can explain the difference, so can see them as being equal.
assert!(types_equal(id_a, id_b, ®istry));
assert!(types_equal(id_c, id_d, ®istry));
assert!(types_equal(id_e, id_f, ®istry));
// Sanity check that the pairs are not equal with each other.
assert!(!types_equal(id_a, id_c, ®istry));
assert!(!types_equal(id_a, id_e, ®istry));
assert!(!types_equal(id_c, id_e, ®istry));
// Now, check that the generated output is sane and in line with this...
ensure_unique_type_paths(&mut registry);
let settings = crate::TypeGeneratorSettings::new();
let output = crate::TypeGenerator::new(®istry, &settings)
.generate_types_mod()
.unwrap()
.to_token_stream(&settings);
// This isn't ideal, but I printed out the token stream, and it looks good (ie generates
// 3 types after deduplicating with the correct generic param usage), so this test will
// check that the output still looks good. To update, copy and `rustfmt` the new output
// and then adjust the odd thing until it matches again.
let expected = quote! {
pub mod types {
use super::types;
pub mod my {
use super::types;
pub mod module {
use super::types;
pub struct NestedType1<_0>(pub _0,);
pub struct NestedType2<_0>(pub ::std::vec::Vec<_0>,);
pub struct NestedType3<_0>(
pub ::std::vec::Vec<types::scale_typegen::utils::tests::Foo<_0> >,
);
}
}
pub mod scale_typegen {
use super::types;
pub mod utils {
use super::types;
pub mod tests {
use super::types;
pub struct Foo<_0> {
pub _inner: _0,
}
}
}
}
}
};
assert_eq!(output.to_string(), expected.to_string());
}
}