1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
use std::collections::btree_map::Entry;

use crate::{utils::types_equal_extended_to_params, TypegenError};

use self::{
    ir::module_ir::ModuleIR,
    ir::type_ir::{CompositeFieldIR, CompositeIR, CompositeIRKind, EnumIR, TypeIR, TypeIRKind},
    settings::{
        derives::{Derives, FlatDerivesRegistry},
        TypeGeneratorSettings,
    },
    type_params::TypeParameters,
    type_path::{TypeParameter, TypePath, TypePathType},
};

use proc_macro2::{Ident, TokenStream};
use quote::quote;
use scale_info::{form::PortableForm, PortableRegistry, Type, TypeDef};
use syn::parse_quote;

/// Custom error types.
pub mod error;
/// Intermediate representation of types and modules.
pub mod ir;
/// Settings passed into the `TypeGenerator`.
pub mod settings;
/// Logic for dealing with used and unused generic type parameters.
pub mod type_params;
/// Type path definition and conversion into tokens.
pub mod type_path;
/// Utility functions to validate that type paths in the user defined
/// derives and substitutes exist in a type registry.
pub mod validation;

/// An interface for generating a types module.
#[derive(Debug, Clone, Copy)]
pub struct TypeGenerator<'a> {
    type_registry: &'a PortableRegistry,
    settings: &'a TypeGeneratorSettings,
}

impl<'a> TypeGenerator<'a> {
    /// Construct a new [`TypeGenerator`].
    pub fn new(type_registry: &'a PortableRegistry, settings: &'a TypeGeneratorSettings) -> Self {
        Self {
            type_registry,
            settings,
        }
    }

    /// The name of the generated module which will contain the generated types.
    pub fn types_mod_ident(&self) -> &Ident {
        &self.settings.types_mod_ident
    }

    /// The settings used by this type generator.
    pub fn settings(&self) -> &TypeGeneratorSettings {
        self.settings
    }

    /// The type registry backing this type generator.
    pub fn types(&self) -> &PortableRegistry {
        self.type_registry
    }

    /// Generate a module containing all types defined in the supplied type registry.
    pub fn generate_types_mod(&self) -> Result<ModuleIR, TypegenError> {
        let flat_derives_registry = self
            .settings
            .derives
            .clone()
            .flatten_recursive_derives(self.type_registry)?;

        let mut root_mod = ModuleIR::new(
            self.settings.types_mod_ident.clone(),
            self.settings.types_mod_ident.clone(),
        );

        for ty in &self.type_registry.types {
            let path = &ty.ty.path;
            // Don't generate a type if it was substituted - the target type might
            // not be in the type registry + our resolution already performs the substitution.
            if self.settings.substitutes.contains(&path.segments) {
                continue;
            }

            let namespace = path.namespace();
            // prelude types e.g. Option/Result have no namespace, so we don't generate them
            if namespace.is_empty() {
                continue;
            }

            // if the type is not a builtin type, insert it into the respective module
            let ty = &ty.ty;
            if let Some(type_ir) = self.create_type_ir(ty, &flat_derives_registry)? {
                // Create the module this type should go into
                let innermost_module = root_mod.get_or_insert_submodule(namespace);
                match innermost_module.types.entry(path.clone()) {
                    Entry::Vacant(e) => {
                        e.insert((ty, type_ir));
                    }
                    Entry::Occupied(e) => {
                        // There is already a type with the same type path present.
                        // We do not just want to override it, so we check if the two types are semantically similar (structure + generics).
                        // If not, return an error, if yes, just keep the first one.
                        let other_ty = &e.get().0;
                        if !types_equal_extended_to_params(ty, other_ty) {
                            return Err(TypegenError::DuplicateTypePath(ty.path.to_string()));
                        }
                    }
                };
            }
        }

        Ok(root_mod)
    }

    /// Creates an intermediate representation of a type that can later be converted into rust tokens.
    pub fn create_type_ir(
        &self,
        ty: &Type<PortableForm>,
        flat_derives_registry: &FlatDerivesRegistry,
    ) -> Result<Option<TypeIR>, TypegenError> {
        // if the type is some builtin, early return, we are only interested in generating structs and enums.
        if !matches!(ty.type_def, TypeDef::Composite(_) | TypeDef::Variant(_)) {
            return Ok(None);
        }

        let mut type_params = TypeParameters::from_scale_info(&ty.type_params);

        let name = ty
            .path
            .ident()
            .map(|e| syn::parse_str::<Ident>(&e))
            .expect(
            "Structs and enums should have a name. Checked with namespace.is_empty() above. qed;",
        )?;

        let docs = self.docs_from_scale_info(&ty.docs);

        let mut could_derive_as_compact: bool = false;
        let kind = match &ty.type_def {
            TypeDef::Composite(composite) => {
                let kind = self.create_composite_ir_kind(&composite.fields, &mut type_params)?;

                if kind.could_derive_as_compact() {
                    could_derive_as_compact = true;
                }

                TypeIRKind::Struct(CompositeIR { name, kind, docs })
            }
            TypeDef::Variant(variant) => {
                let variants = variant
                    .variants
                    .iter()
                    .map(|v| {
                        let name = syn::parse_str::<Ident>(&v.name)?;
                        let kind = self.create_composite_ir_kind(&v.fields, &mut type_params)?;
                        let docs = self.docs_from_scale_info(&v.docs);
                        Ok((v.index, CompositeIR { kind, name, docs }))
                    })
                    .collect::<Result<Vec<(u8, CompositeIR)>, TypegenError>>()?;
                TypeIRKind::Enum(EnumIR {
                    name,
                    variants,
                    docs,
                })
            }
            _ => unreachable!("Other variants early return before. qed."),
        };

        let mut derives = flat_derives_registry.resolve_derives_for_type(ty)?;
        if could_derive_as_compact {
            self.add_as_compact_derive(&mut derives);
        }

        let type_ir = TypeIR {
            kind,
            derives,
            type_params,
            insert_codec_attributes: self.settings.insert_codec_attributes,
        };
        Ok(Some(type_ir))
    }

    /// takes into account the settings value for `should_gen_docs`
    pub fn docs_from_scale_info(&self, docs: &[String]) -> TokenStream {
        self.settings
            .should_gen_docs
            .then_some(quote! { #( #[doc = #docs ] )* })
            .unwrap_or_default()
    }

    /// Creates an intermediate representation of a composite.
    pub fn create_composite_ir_kind(
        &self,
        fields: &[scale_info::Field<PortableForm>],
        type_params: &mut TypeParameters,
    ) -> Result<CompositeIRKind, TypegenError> {
        if fields.is_empty() {
            return Ok(CompositeIRKind::NoFields);
        }

        let all_fields_named = fields.iter().all(|f| f.name.is_some());
        let all_fields_unnamed = fields.iter().all(|f| f.name.is_none());

        if !(all_fields_named || all_fields_unnamed) {
            return Err(TypegenError::InvalidFields(format!("{:?}", fields)));
        }

        if all_fields_named {
            let named_fields = fields
                .iter()
                .map(|field| {
                    let field_name = field.name.as_ref().unwrap();
                    let ident = syn::parse_str::<Ident>(field_name)?;

                    let path = self.resolve_field_type_path(
                        field.ty.id,
                        type_params.params(),
                        field.type_name.as_deref(),
                    )?;
                    let is_compact = path.is_compact();
                    let is_boxed = field
                        .type_name
                        .as_ref()
                        .map(|e| e.contains("Box<"))
                        .unwrap_or_default();

                    for param in path.parent_type_params().iter() {
                        type_params.mark_used(param);
                    }

                    Ok((ident, CompositeFieldIR::new(path, is_compact, is_boxed)))
                })
                .collect::<Result<Vec<(Ident, CompositeFieldIR)>, TypegenError>>()?;
            Ok(CompositeIRKind::Named(named_fields))
        } else if all_fields_unnamed {
            let unnamed_fields = fields
                .iter()
                .map(|field| {
                    let path = self.resolve_field_type_path(
                        field.ty.id,
                        type_params.params(),
                        field.type_name.as_deref(),
                    )?;

                    let is_compact = path.is_compact();
                    let is_boxed = field
                        .type_name
                        .as_ref()
                        .map(|e| e.contains("Box<"))
                        .unwrap_or_default();

                    for param in path.parent_type_params().iter() {
                        type_params.mark_used(param);
                    }

                    Ok(CompositeFieldIR::new(path, is_compact, is_boxed))
                })
                .collect::<Result<Vec<CompositeFieldIR>, TypegenError>>()?;
            Ok(CompositeIRKind::Unnamed(unnamed_fields))
        } else {
            unreachable!("Is either all unnamed or all named. qed.")
        }
    }

    /// Creates the intermediate representation of a type from just a composite definition.
    /// This uses just the default derives and type params are left empty.
    pub fn upcast_composite(&self, composite: &CompositeIR) -> TypeIR {
        // just use Default Derives + AsCompact. No access to type specific derives here. (Mainly used in subxt to create structs from enum variants...)
        let mut derives = self.settings.derives.default_derives().clone();
        if composite.kind.could_derive_as_compact() {
            self.add_as_compact_derive(&mut derives)
        }
        TypeIR {
            type_params: TypeParameters::from_scale_info(&[]),
            derives,
            insert_codec_attributes: self.settings.insert_codec_attributes,
            kind: TypeIRKind::Struct(composite.clone()),
        }
    }

    /// Adds a AsCompact derive, if a path to AsCompact trait/derive macro set in settings.
    fn add_as_compact_derive(&self, derives: &mut Derives) {
        if let Some(compact_as_type_path) = &self.settings.compact_as_type_path {
            derives.insert_derive(parse_quote!(#compact_as_type_path));
        }
    }

    /// Get the type path for a field of a struct or an enum variant, providing any generic
    /// type parameters from the containing type. This is for identifying where a generic type
    /// parameter is used in a field type e.g.
    ///
    /// ```rust
    /// struct S<T> {
    ///     a: T, // `T` is the "parent" type param from the containing type.
    ///     b: Vec<Option<T>>, // nested use of generic type param `T`.
    /// }
    /// ```
    ///
    /// This allows generating the correct generic field type paths.
    pub fn resolve_field_type_path(
        &self,
        id: u32,
        parent_type_params: &[TypeParameter],
        original_name: Option<&str>,
    ) -> Result<TypePath, TypegenError> {
        self.resolve_type_path_recurse(id, true, parent_type_params, original_name)
    }

    /// Get the type path for the given type identifier.
    pub fn resolve_type_path(&self, id: u32) -> Result<TypePath, TypegenError> {
        self.resolve_type_path_recurse(id, false, &[], None)
    }

    /// Visit each node in a possibly nested type definition to produce a type path.
    ///
    /// e.g `Result<GenericStruct<NestedGenericStruct<T>>, String>`
    ///
    /// if `original_name` is `Some(original_name)`, the resolved type needs to have the same `original_name`.
    fn resolve_type_path_recurse(
        &self,
        id: u32,
        is_field: bool,
        parent_type_params: &[TypeParameter],
        original_name: Option<&str>,
    ) -> Result<TypePath, TypegenError> {
        if let Some(parent_type_param) = parent_type_params.iter().find(|tp| {
            tp.concrete_type_id == id
                && original_name.map_or(true, |original_name| tp.original_name == original_name)
        }) {
            let type_path = TypePath::from_parameter(parent_type_param.clone());
            return Ok(type_path);
        }

        let mut ty = self.resolve_type(id)?;

        if ty.path.ident() == Some("Cow".to_string()) {
            let inner_ty_id = ty.type_params[0]
                .ty
                .ok_or_else(|| {
                    TypegenError::InvalidType(
                        "type parameters to Cow are not expected to be skipped".into(),
                    )
                })?
                .id;
            ty = self.resolve_type(inner_ty_id)?
        }

        let params: Vec<TypePath> = ty
            .type_params
            .iter()
            .filter_map(|f| {
                f.ty.map(|f| self.resolve_type_path_recurse(f.id, false, parent_type_params, None))
            })
            .collect::<Result<Vec<TypePath>, TypegenError>>()?;

        let ty = match &ty.type_def {
            TypeDef::Composite(_) | TypeDef::Variant(_) => {
                self.type_path_maybe_with_substitutes(&ty.path, &params)
            }
            TypeDef::Primitive(primitive) => TypePathType::Primitive {
                def: primitive.clone(),
            },
            TypeDef::Array(arr) => {
                let inner_type = self.resolve_type_path_recurse(
                    arr.type_param.id,
                    false,
                    parent_type_params,
                    None,
                )?;
                TypePathType::Array {
                    len: arr.len as usize,
                    of: Box::new(inner_type),
                }
            }
            TypeDef::Sequence(seq) => {
                let inner_type = self.resolve_type_path_recurse(
                    seq.type_param.id,
                    false,
                    parent_type_params,
                    None,
                )?;
                TypePathType::Vec {
                    of: Box::new(inner_type),
                }
            }
            TypeDef::Tuple(tuple) => {
                let elements = tuple
                    .fields
                    .iter()
                    .map(|f| self.resolve_type_path_recurse(f.id, false, parent_type_params, None))
                    .collect::<Result<Vec<TypePath>, TypegenError>>()?;

                TypePathType::Tuple { elements }
            }
            TypeDef::Compact(compact) => {
                let inner_type = self.resolve_type_path_recurse(
                    compact.type_param.id,
                    false,
                    parent_type_params,
                    None,
                )?;

                let compact_type_path = self
                    .settings
                    .compact_type_path
                    .as_ref()
                    .ok_or(TypegenError::CompactPathNone)?
                    .clone();

                TypePathType::Compact {
                    inner: Box::new(inner_type),
                    is_field,
                    compact_type_path,
                }
            }
            TypeDef::BitSequence(bitseq) => {
                let decoded_bits_type_path = self
                    .settings
                    .decoded_bits_type_path
                    .as_ref()
                    .ok_or(TypegenError::DecodedBitsPathNone)?
                    .clone();

                let bit_order_type = self.resolve_type_path_recurse(
                    bitseq.bit_order_type.id,
                    false,
                    parent_type_params,
                    None,
                )?;

                let bit_store_type = self.resolve_type_path_recurse(
                    bitseq.bit_store_type.id,
                    false,
                    parent_type_params,
                    None,
                )?;

                TypePathType::BitVec {
                    bit_order_type: Box::new(bit_order_type),
                    bit_store_type: Box::new(bit_store_type),
                    decoded_bits_type_path,
                }
            }
        };
        Ok(TypePath::from_type(ty))
    }

    /// Converts a [`scale_info::Path`] into a [`TypePathType`], replacing all types that should be substituted.
    pub fn type_path_maybe_with_substitutes(
        &self,
        path: &scale_info::Path<PortableForm>,
        params: &[TypePath],
    ) -> TypePathType {
        if let Some(substitute) =
            self.settings
                .substitutes
                .for_path_with_params(&path.segments, params, self.settings)
        {
            substitute
        } else {
            TypePathType::from_type_def_path(
                path,
                self.settings.types_mod_ident.clone(),
                params.to_vec(),
                &self.settings.alloc_crate_path,
            )
        }
    }

    /// Resolves a type, given some type id.
    pub fn resolve_type(&self, id: u32) -> Result<&Type<PortableForm>, TypegenError> {
        let ty = self
            .type_registry
            .resolve(id)
            .ok_or(TypegenError::TypeNotFound(id))?;
        Ok(ty)
    }
}