scale_encode/impls/composite.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
// Copyright (C) 2023 Parity Technologies (UK) Ltd. (admin@parity.io)
// This file is a part of the scale-encode crate.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use crate::{
error::{Error, ErrorKind, Kind, Location},
EncodeAsType, Field, FieldIter, TypeResolver,
};
use alloc::collections::BTreeMap;
use alloc::{format, string::ToString, vec::Vec};
use scale_type_resolver::visitor;
/// This trait exists to get around object safety issues using [`EncodeAsType`].
/// It's object safe and automatically implemented for any type which implements
/// [`EncodeAsType`]. We need this to construct generic [`Composite`] types.
trait EncodeAsTypeWithResolver<R: TypeResolver> {
fn encode_as_type_with_resolver_to(
&self,
type_id: R::TypeId,
types: &R,
out: &mut Vec<u8>,
) -> Result<(), Error>;
}
impl<T: EncodeAsType, R: TypeResolver> EncodeAsTypeWithResolver<R> for T {
fn encode_as_type_with_resolver_to(
&self,
type_id: R::TypeId,
types: &R,
out: &mut Vec<u8>,
) -> Result<(), Error> {
self.encode_as_type_to(type_id, types, out)
}
}
/// A struct representing a single composite field. To be used in conjunction
/// with the [`Composite`] struct to construct generic composite shaped types.
/// this basically takes a type which implements [`EncodeAsType`] and turns it
/// into something object safe.
pub struct CompositeField<'a, R> {
val: &'a dyn EncodeAsTypeWithResolver<R>,
}
impl<'a, R> Copy for CompositeField<'a, R> {}
impl<'a, R> Clone for CompositeField<'a, R> {
fn clone(&self) -> Self {
*self
}
}
impl<'a, R> core::fmt::Debug for CompositeField<'a, R> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.write_str("CompositeField")
}
}
impl<'a, R: TypeResolver> CompositeField<'a, R> {
/// Construct a new composite field given some type which implements
/// [`EncodeAsType`].
pub fn new<T: EncodeAsType>(val: &'a T) -> Self {
CompositeField { val }
}
/// SCALE encode this composite field to bytes based on the underlying type.
pub fn encode_composite_field_to(
&self,
type_id: R::TypeId,
types: &R,
out: &mut Vec<u8>,
) -> Result<(), Error> {
self.val
.encode_as_type_with_resolver_to(type_id, types, out)
}
}
/// This type represents named or unnamed composite values, and can be used to help generate
/// `EncodeAsType` impls. It's primarily used by the exported macros to do just that.
///
/// ```rust
/// use scale_encode::{
/// Error, EncodeAsType, Composite, CompositeField, TypeResolver
/// };
///
/// struct MyType {
/// foo: bool,
/// bar: u64,
/// wibble: String
/// }
///
/// impl EncodeAsType for MyType {
/// fn encode_as_type_to<R: TypeResolver>(
/// &self,
/// type_id: R::TypeId,
/// types: &R,
/// out: &mut Vec<u8>
/// ) -> Result<(), Error> {
/// Composite::new([
/// (Some("foo"), CompositeField::new(&self.foo)),
/// (Some("bar"), CompositeField::new(&self.bar)),
/// (Some("wibble"), CompositeField::new(&self.wibble))
/// ].into_iter()).encode_composite_as_type_to(type_id, types, out)
/// }
/// }
/// ```
///
/// [`Composite`] cannot implement [`EncodeAsType`] itself, because it is tied to being
/// encoded with a specific `R: TypeResolver`, whereas things implementing [`EncodeAsType`]
/// need to be encodable using _any_ [`TypeResolver`]. This is ultimately because
/// [`EncodeAsType`] is not object safe, which prevents it from being used to describe
/// [`CompositeFields`][CompositeField].
pub struct Composite<R, Vals> {
vals: Vals,
marker: core::marker::PhantomData<R>,
}
impl<'a, R, Vals> Composite<R, Vals>
where
R: TypeResolver + 'a,
Vals: ExactSizeIterator<Item = (Option<&'a str>, CompositeField<'a, R>)> + Clone,
{
/// Construct a new [`Composite`] type by providing an iterator over
/// the fields that it contains.
///
/// ```rust
/// use scale_encode::{ Composite, CompositeField };
/// use scale_info::PortableRegistry;
///
/// Composite::<PortableRegistry, _>::new([
/// (Some("foo"), CompositeField::new(&123)),
/// (Some("bar"), CompositeField::new(&"hello"))
/// ].into_iter());
/// ```
pub fn new(vals: Vals) -> Self {
Composite {
vals,
marker: core::marker::PhantomData,
}
}
/// A shortcut for [`Self::encode_composite_as_type_to()`] which internally
/// allocates a [`Vec`] and returns it.
pub fn encode_composite_as_type(
&self,
type_id: R::TypeId,
types: &R,
) -> Result<Vec<u8>, Error> {
let mut out = Vec::new();
self.encode_composite_as_type_to(type_id, types, &mut out)?;
Ok(out)
}
/// Encode this composite value as the provided type to the output bytes.
pub fn encode_composite_as_type_to(
&self,
type_id: R::TypeId,
types: &R,
out: &mut Vec<u8>,
) -> Result<(), Error> {
let vals_iter = self.vals.clone();
let vals_iter_len = vals_iter.len();
// Skip through any single field composites/tuples without names. If there
// are names, we may want to line up input field(s) on them.
let type_id = skip_through_single_unnamed_fields(type_id, types);
let v = visitor::new(
(type_id.clone(), out, vals_iter),
|(type_id, out, mut vals_iter), _| {
// Rather than immediately giving up, we should at least see whether
// we can skip one level in to our value and encode that.
if vals_iter_len == 1 {
return vals_iter
.next()
.expect("1 value expected")
.1
.encode_composite_field_to(type_id, types, out);
}
// If we get here, then it means the value we were given had more than
// one field, and the type we were given was ultimately some one-field thing
// that contained a non composite/tuple type, so it would never work out.
Err(Error::new(ErrorKind::WrongShape {
actual: Kind::Struct,
expected_id: format!("{type_id:?}"),
}))
},
)
.visit_not_found(|(type_id, _, _)| {
Err(Error::new(ErrorKind::TypeNotFound(format!("{type_id:?}"))))
})
.visit_composite(|(type_id, out, mut vals_iter), _, mut fields| {
// If vals are named, we may need to line them up with some named composite.
// If they aren't named, we only care about lining up based on matching lengths.
let is_named_vals = vals_iter.clone().any(|(name, _)| name.is_some());
// If there is exactly one val that isn't named, then we know it won't line
// up with this composite then, so try encoding one level in.
if !is_named_vals && vals_iter_len == 1 {
return vals_iter
.next()
.expect("1 value expected")
.1
.encode_composite_field_to(type_id, types, out);
}
self.encode_composite_fields_to(&mut fields, types, out)
})
.visit_tuple(|(type_id, out, mut vals_iter), type_ids| {
// If there is exactly one val, it won't line up with the tuple then, so
// try encoding one level in instead.
if vals_iter_len == 1 {
return vals_iter
.next()
.unwrap()
.1
.encode_composite_field_to(type_id, types, out);
}
let mut fields = type_ids.map(Field::unnamed);
self.encode_composite_fields_to(
&mut fields as &mut dyn FieldIter<'_, R::TypeId>,
types,
out,
)
});
super::resolve_type_and_encode(types, type_id, v)
}
/// A shortcut for [`Self::encode_composite_fields_to()`] which internally
/// allocates a [`Vec`] and returns it.
pub fn encode_composite_fields(
&self,
fields: &mut dyn FieldIter<'_, R::TypeId>,
types: &R,
) -> Result<Vec<u8>, Error> {
let mut out = Vec::new();
self.encode_composite_fields_to(fields, types, &mut out)?;
Ok(out)
}
/// Encode the composite fields as the provided field description to the output bytes
pub fn encode_composite_fields_to(
&self,
fields: &mut dyn FieldIter<'_, R::TypeId>,
types: &R,
out: &mut Vec<u8>,
) -> Result<(), Error> {
let vals_iter = self.vals.clone();
// Most of the time there aren't too many fields, so avoid allocation in most cases:
let fields = smallvec::SmallVec::<[_; 16]>::from_iter(fields);
// Both the target and source type have to have named fields for us to use
// names to line them up.
let is_named = {
let is_target_named = fields.iter().any(|f| f.name.is_some());
let is_source_named = vals_iter.clone().any(|(name, _)| name.is_some());
is_target_named && is_source_named
};
if is_named {
// target + source fields are named, so hash source values by name and
// then encode to the target type by matching the names. If fields are
// named, we don't even mind if the number of fields doesn't line up;
// we just ignore any fields we provided that aren't needed.
let source_fields_by_name: BTreeMap<&str, CompositeField<'a, R>> = vals_iter
.map(|(name, val)| (name.unwrap_or(""), val))
.collect();
for field in fields {
// Find the field in our source type:
let name = field.name.unwrap_or("");
let Some(value) = source_fields_by_name.get(name) else {
return Err(Error::new(ErrorKind::CannotFindField {
name: name.to_string(),
}));
};
// Encode the value to the output:
value
.encode_composite_field_to(field.id, types, out)
.map_err(|e| e.at_field(name.to_string()))?;
}
Ok(())
} else {
let fields_len = fields.len();
// target fields aren't named, so encode by order only. We need the field length
// to line up for this to work.
if fields_len != vals_iter.len() {
return Err(Error::new(ErrorKind::WrongLength {
actual_len: vals_iter.len(),
expected_len: fields_len,
}));
}
for (idx, (field, (name, val))) in fields.iter().zip(vals_iter).enumerate() {
val.encode_composite_field_to(field.id.clone(), types, out)
.map_err(|e| {
let loc = if let Some(name) = name {
Location::field(name.to_string())
} else {
Location::idx(idx)
};
e.at(loc)
})?;
}
Ok(())
}
}
}
// Single unnamed fields carry no useful information and can be skipped through.
// Single named fields may still be useful to line up with named composites.
fn skip_through_single_unnamed_fields<R: TypeResolver>(type_id: R::TypeId, types: &R) -> R::TypeId {
let v = visitor::new(type_id.clone(), |type_id, _| type_id)
.visit_composite(|type_id, _, fields| {
// If exactly 1 unnamed field, recurse into it, else return current type ID.
let Some(f) = fields.next() else {
return type_id;
};
if fields.next().is_some() || f.name.is_some() {
return type_id;
};
skip_through_single_unnamed_fields(f.id, types)
})
.visit_tuple(|type_id, type_ids| {
// Else if exactly 1 tuple entry, recurse into it, else return current type ID.
let Some(new_type_id) = type_ids.next() else {
return type_id;
};
if type_ids.next().is_some() {
return type_id;
};
skip_through_single_unnamed_fields(new_type_id, types)
});
types.resolve_type(type_id.clone(), v).unwrap_or(type_id)
}