1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
// Copyright (C) 2023 Parity Technologies (UK) Ltd. (admin@parity.io)
// This file is a part of the scale-encode crate.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#![cfg_attr(not(feature = "std"), no_std)]
/*!
`parity-scale-codec` provides an `Encode` trait which allows types to SCALE encode themselves based on their shape.
This crate builds on this, and allows types to encode themselves based on [`scale_info`] type information. It
exposes two traits:
- An [`EncodeAsType`] trait which when implemented on some type, describes how it can be SCALE encoded
with the help of a type ID and type registry describing the expected shape of the encoded bytes.
- An [`EncodeAsFields`] trait which when implemented on some type, describes how it can be SCALE encoded
with the help of an iterator over [`Field`]s and a type registry describing the expected shape of the
encoded bytes. This is generally only implemented for tuples and structs, since we need a set of fields
to map to the provided iterator.
Implementations for many built-in types are also provided for each trait, and the [`macro@EncodeAsType`]
macro makes it easy to generate implementations for new structs and enums.
# Motivation
By de-coupling the shape of a type from how it's encoded, we make it much more likely that encoding some type will succeed,
and are no longer reliant on types having a precise layout in order to encode correctly. Some examples of this follow.
```rust
use codec::Encode;
use scale_encode::EncodeAsType;
use scale_info::{PortableRegistry, TypeInfo};
// We are commonly provided type information, but for our examples we construct type info from
// any type that implements `TypeInfo`.
fn get_type_info<T: TypeInfo + 'static>() -> (u32, PortableRegistry) {
let m = scale_info::MetaType::new::<T>();
let mut types = scale_info::Registry::new();
let ty = types.register_type(&m);
let portable_registry: PortableRegistry = types.into();
(ty.id(), portable_registry)
}
// Encode the left value via EncodeAsType into the shape of the right value.
// Encode the right value statically.
// Assert that both outputs are identical.
fn assert_encodes_to<A, B>(a: A, b: B)
where
A: EncodeAsType,
B: TypeInfo + Encode + 'static,
{
let (type_id, types) = get_type_info::<B>();
let a_bytes = a.encode_as_type(type_id, &types).unwrap();
let b_bytes = b.encode();
assert_eq!(a_bytes, b_bytes);
}
// Start simple; a u8 can EncodeAsType into a u64 and vice versa. Numbers will all
// try to convert into the desired output size, failing if this isn't possible:
assert_encodes_to(123u8, 123u64);
assert_encodes_to(123u64, 123u8);
// Compact encoding is also handled "under the hood" by EncodeAsType, so no "compact"
// annotations are needed on values.
assert_encodes_to(123u64, codec::Compact(123u64));
// Enum variants are lined up by variant name, so no explicit "index" annotation are
// needed either; EncodeAsType will take care of it.
#[derive(EncodeAsType)]
enum Foo {
Something(u64),
}
#[derive(Encode, TypeInfo)]
enum FooTarget {
#[codec(index = 10)]
Something(u128),
}
assert_encodes_to(Foo::Something(123), FooTarget::Something(123));
// EncodeAstype will just ignore named fields that aren't needed:
#[derive(EncodeAsType)]
struct Bar {
a: bool,
b: String,
}
#[derive(Encode, TypeInfo)]
struct BarTarget {
a: bool,
}
assert_encodes_to(
Bar { a: true, b: "hello".to_string() },
BarTarget { a: true },
);
// EncodeAsType will attempt to remove any newtype wrappers and such on either
// side, so that they can be omitted without any issue.
#[derive(EncodeAsType, Encode, TypeInfo)]
struct Wrapper {
value: u64
}
assert_encodes_to(
(Wrapper { value: 123 },),
123u64
);
assert_encodes_to(
123u64,
(Wrapper { value: 123 },)
);
// Things like arrays and sequences are generally interchangeable despite the
// encoding format being slightly different:
assert_encodes_to([1u8,2,3,4,5], vec![1u64,2,3,4,5]);
assert_encodes_to(vec![1u64,2,3,4,5], [1u8,2,3,4,5]);
// BTreeMap, as a slightly special case, can encode to the same shape as either
// a sequence or a struct, depending on what's asked for:
use std::collections::BTreeMap;
#[derive(TypeInfo, Encode)]
struct MapOutput {
a: u64,
b: u64
}
assert_encodes_to(
BTreeMap::from_iter([("a", 1u64), ("b", 2u64)]),
vec![1u64,2]
);
assert_encodes_to(
BTreeMap::from_iter([("a", 1u64), ("b", 2u64), ("c", 3u64)]),
MapOutput { a: 1, b: 2 }
);
```
*/
#![deny(missing_docs)]
extern crate alloc;
mod impls;
pub mod error;
// This is exported for generated derive code to use, to be compatible with std or no-std as needed.
#[doc(hidden)]
pub use alloc::vec::Vec;
pub use error::Error;
// Useful types to help implement EncodeAsType/Fields with:
pub use crate::impls::{Composite, Variant};
pub use scale_info::PortableRegistry;
/// Re-exports of external crates.
pub mod ext {
#[cfg(feature = "primitive-types")]
pub use primitive_types;
}
/// This trait signals that some static type can possibly be SCALE encoded given some
/// `type_id` and [`PortableRegistry`] which dictates the expected encoding.
pub trait EncodeAsType {
/// Given some `type_id`, `types`, a `context` and some output target for the SCALE encoded bytes,
/// attempt to SCALE encode the current value into the type given by `type_id`.
fn encode_as_type_to(
&self,
type_id: u32,
types: &PortableRegistry,
out: &mut Vec<u8>,
) -> Result<(), Error>;
/// This is a helper function which internally calls [`EncodeAsType::encode_as_type_to`]. Prefer to
/// implement that instead.
fn encode_as_type(&self, type_id: u32, types: &PortableRegistry) -> Result<Vec<u8>, Error> {
let mut out = Vec::new();
self.encode_as_type_to(type_id, types, &mut out)?;
Ok(out)
}
}
/// This is similar to [`EncodeAsType`], except that it can be implemented on types that can be encoded
/// to bytes given a list of fields instead of a single type ID. This is generally implemented just for
/// tuple and struct types, and is automatically implemented via the [`macro@EncodeAsType`] macro.
pub trait EncodeAsFields {
/// Given some fields describing the shape of a type, attempt to encode to that shape.
fn encode_as_fields_to(
&self,
fields: &mut dyn FieldIter<'_>,
types: &PortableRegistry,
out: &mut Vec<u8>,
) -> Result<(), Error>;
/// This is a helper function which internally calls [`EncodeAsFields::encode_as_fields_to`]. Prefer to
/// implement that instead.
fn encode_as_fields(
&self,
fields: &mut dyn FieldIter<'_>,
types: &PortableRegistry,
) -> Result<Vec<u8>, Error> {
let mut out = Vec::new();
self.encode_as_fields_to(fields, types, &mut out)?;
Ok(out)
}
}
/// A representation of a single field to be encoded via [`EncodeAsFields::encode_as_fields_to`].
#[derive(Debug, Clone, Copy)]
pub struct Field<'a> {
name: Option<&'a str>,
id: u32,
}
impl<'a> Field<'a> {
/// Construct a new field with an ID and optional name.
pub fn new(id: u32, name: Option<&'a str>) -> Self {
Field { id, name }
}
/// Create a new unnamed field.
pub fn unnamed(id: u32) -> Self {
Field { name: None, id }
}
/// Create a new named field.
pub fn named(id: u32, name: &'a str) -> Self {
Field {
name: Some(name),
id,
}
}
/// The field name, if any.
pub fn name(&self) -> Option<&'a str> {
self.name
}
/// The field ID.
pub fn id(&self) -> u32 {
self.id
}
}
/// An iterator over a set of fields.
pub trait FieldIter<'a>: Iterator<Item = Field<'a>> {}
impl<'a, T> FieldIter<'a> for T where T: Iterator<Item = Field<'a>> {}
/// The `EncodeAsType` derive macro can be used to implement `EncodeAsType`
/// on structs and enums whose fields all implement `EncodeAsType`.
///
/// # Examples
///
/// This can be applied to structs and enums:
///
/// ```rust
/// use scale_encode::EncodeAsType;
///
/// #[derive(EncodeAsType)]
/// struct Foo(String);
///
/// #[derive(EncodeAsType)]
/// struct Bar {
/// a: u64,
/// b: bool
/// }
///
/// #[derive(EncodeAsType)]
/// enum Wibble<T> {
/// A(usize, bool, T),
/// B { value: String },
/// C
/// }
/// ```
///
/// If you aren't directly depending on `scale_encode`, you must tell the macro what the path
/// to it is so that it knows how to generate the relevant impls:
///
/// ```rust
/// # use scale_encode as alt_path;
/// use alt_path::EncodeAsType;
///
/// #[derive(EncodeAsType)]
/// #[encode_as_type(crate_path = "alt_path")]
/// struct Foo<T> {
/// a: u64,
/// b: T
/// }
/// ```
///
/// If you use generics, the macro will assume that each of them also implements `EncodeAsType`.
/// This can be overridden when it's not the case (the compiler will ensure that you can't go wrong here):
///
/// ```rust
/// use scale_encode::EncodeAsType;
///
/// #[derive(EncodeAsType)]
/// #[encode_as_type(trait_bounds = "")]
/// struct Foo<T> {
/// a: u64,
/// b: bool,
/// c: std::marker::PhantomData<T>
/// }
/// ```
///
/// # Attributes
///
/// - `#[encode_as_type(crate_path = "::path::to::scale_encode")]`:
/// By default, the macro expects `scale_encode` to be a top level dependency,
/// available as `::scale_encode`. If this is not the case, you can provide the
/// crate path here.
/// - `#[encode_as_type(trait_bounds = "T: Foo, U::Input: EncodeAsType")]`:
/// By default, for each generate type parameter, the macro will add trait bounds such
/// that these type parameters must implement `EncodeAsType` too. You can override this
/// behaviour and provide your own trait bounds instead using this option.
#[cfg(feature = "derive")]
pub use scale_encode_derive::EncodeAsType;
#[cfg(test)]
mod test {
use super::*;
use alloc::boxed::Box;
// Confirm object safety of EncodeAsFields; we want this.
// (doesn't really need to run; compile time only.)
#[test]
fn is_object_safe() {
fn _foo(_input: Box<dyn EncodeAsFields>) {}
}
}