1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
// Copyright (C) 2023 Parity Technologies (UK) Ltd. (admin@parity.io)
// This file is a part of the scale-encode crate.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use crate::{
error::{Error, ErrorKind, Kind, Location},
EncodeAsFields, EncodeAsType, Field, FieldIter,
};
use alloc::collections::BTreeMap;
use alloc::{string::ToString, vec::Vec};
use scale_info::{PortableRegistry, TypeDef};
/// This type represents named or unnamed composite values, and can be used
/// to help generate `EncodeAsType` impls. It's primarily used by the exported
/// macros to do just that.
///
/// ```rust
/// use scale_encode::{ Error, EncodeAsType, Composite, PortableRegistry };
///
/// struct MyType {
/// foo: bool,
/// bar: u64,
/// wibble: String
/// }
///
/// impl EncodeAsType for MyType {
/// fn encode_as_type_to(&self, type_id: u32, types: &PortableRegistry, out: &mut Vec<u8>) -> Result<(), Error> {
/// Composite([
/// (Some("foo"), &self.foo as &dyn EncodeAsType),
/// (Some("bar"), &self.bar as &dyn EncodeAsType),
/// (Some("wibble"), &self.wibble as &dyn EncodeAsType)
/// ].into_iter()).encode_as_type_to(type_id, types, out)
/// }
/// }
/// ```
pub struct Composite<Vals>(pub Vals);
impl<'a, Vals> EncodeAsType for Composite<Vals>
where
Vals: ExactSizeIterator<Item = (Option<&'a str>, &'a dyn EncodeAsType)> + Clone,
{
fn encode_as_type_to(
&self,
type_id: u32,
types: &PortableRegistry,
out: &mut Vec<u8>,
) -> Result<(), Error> {
let mut vals_iter = self.0.clone();
let vals_iter_len = vals_iter.len();
// Skip through any single field composites/tuples without names. If there
// are names, we may want to line up input field(s) on them.
let type_id = skip_through_single_unnamed_fields(type_id, types);
let ty = types
.resolve(type_id)
.ok_or_else(|| Error::new(ErrorKind::TypeNotFound(type_id)))?;
match &ty.type_def {
// If we see a tuple type, it'll have more than one field else it'd have been skipped above.
TypeDef::Tuple(tuple) => {
// If there is exactly one val, it won't line up with the tuple then, so
// try encoding one level in instead.
if vals_iter_len == 1 {
return vals_iter
.next()
.unwrap()
.1
.encode_as_type_to(type_id, types, out);
}
let mut fields = tuple.fields.iter().map(|f| Field::unnamed(f.id));
self.encode_as_fields_to(&mut fields, types, out)
}
// If we see a composite type, it has either named fields or !=1 unnamed fields.
TypeDef::Composite(composite) => {
// If vals are named, we may need to line them up with some named composite.
// If they aren't named, we only care about lining up based on matching lengths.
let is_named_vals = vals_iter.clone().any(|(name, _)| name.is_some());
// If there is exactly one val that isn't named, then we know it won't line
// up with this composite then, so try encoding one level in.
if !is_named_vals && vals_iter_len == 1 {
return vals_iter
.next()
.unwrap()
.1
.encode_as_type_to(type_id, types, out);
}
let mut fields = composite
.fields
.iter()
.map(|f| Field::new(f.ty.id, f.name.as_deref()));
self.encode_as_fields_to(&mut fields, types, out)
}
// We may have skipped through to some primitive or other type.
_ => {
// Rather than immediately giving up, we should at least see whether
// we can skip one level in to our value and encode that.
if vals_iter_len == 1 {
return vals_iter
.next()
.unwrap()
.1
.encode_as_type_to(type_id, types, out);
}
// If we get here, then it means the value we were given had more than
// one field, and the type we were given was ultimately some one-field thing
// that contained a non composite/tuple type, so it would never work out.
Err(Error::new(ErrorKind::WrongShape {
actual: Kind::Tuple,
expected: type_id,
}))
}
}
}
}
impl<'a, Vals> EncodeAsFields for Composite<Vals>
where
Vals: ExactSizeIterator<Item = (Option<&'a str>, &'a dyn EncodeAsType)> + Clone,
{
fn encode_as_fields_to(
&self,
fields: &mut dyn FieldIter<'_>,
types: &PortableRegistry,
out: &mut Vec<u8>,
) -> Result<(), Error> {
let vals_iter = self.0.clone();
// Most of the time there aren't too many fields, so avoid allocation in most cases:
let fields = smallvec::SmallVec::<[_; 16]>::from_iter(fields);
// Both the target and source type have to have named fields for us to use
// names to line them up.
let is_named = {
let is_target_named = fields.iter().any(|f| f.name().is_some());
let is_source_named = vals_iter.clone().any(|(name, _)| name.is_some());
is_target_named && is_source_named
};
if is_named {
// target + source fields are named, so hash source values by name and
// then encode to the target type by matching the names. If fields are
// named, we don't even mind if the number of fields doesn't line up;
// we just ignore any fields we provided that aren't needed.
let source_fields_by_name: BTreeMap<&str, &dyn EncodeAsType> = vals_iter
.map(|(name, val)| (name.unwrap_or(""), val))
.collect();
for field in fields {
// Find the field in our source type:
let name = field.name().unwrap_or("");
let Some(value) = source_fields_by_name.get(name) else {
return Err(Error::new(ErrorKind::CannotFindField { name: name.to_string() }))
};
// Encode the value to the output:
value
.encode_as_type_to(field.id(), types, out)
.map_err(|e| e.at_field(name.to_string()))?;
}
Ok(())
} else {
let fields_len = fields.len();
// target fields aren't named, so encode by order only. We need the field length
// to line up for this to work.
if fields_len != vals_iter.len() {
return Err(Error::new(ErrorKind::WrongLength {
actual_len: vals_iter.len(),
expected_len: fields_len,
}));
}
for (idx, (field, (name, val))) in fields.iter().zip(vals_iter).enumerate() {
val.encode_as_type_to(field.id(), types, out).map_err(|e| {
let loc = if let Some(name) = name {
Location::field(name.to_string())
} else {
Location::idx(idx)
};
e.at(loc)
})?;
}
Ok(())
}
}
}
// Single unnamed fields carry no useful information and can be skipped through.
// Single named fields may still be useful to line up with named composites.
fn skip_through_single_unnamed_fields(type_id: u32, types: &PortableRegistry) -> u32 {
let Some(ty) = types.resolve(type_id) else {
return type_id
};
match &ty.type_def {
TypeDef::Tuple(tuple) if tuple.fields.len() == 1 => {
skip_through_single_unnamed_fields(tuple.fields[0].id, types)
}
TypeDef::Composite(composite)
if composite.fields.len() == 1 && composite.fields[0].name.is_none() =>
{
skip_through_single_unnamed_fields(composite.fields[0].ty.id, types)
}
_ => type_id,
}
}