1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
// Copyright (C) 2023 Parity Technologies (UK) Ltd. (admin@parity.io)
// This file is a part of the scale-encode crate.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//         http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use crate::{
    error::{Error, ErrorKind, Kind, Location},
    EncodeAsFields, EncodeAsType, Field, FieldIter,
};
use alloc::collections::BTreeMap;
use alloc::{string::ToString, vec::Vec};
use scale_info::{PortableRegistry, TypeDef};

/// This type represents named or unnamed composite values, and can be used
/// to help generate `EncodeAsType` impls. It's primarily used by the exported
/// macros to do just that.
///
/// ```rust
/// use scale_encode::{ Error, EncodeAsType, Composite, PortableRegistry };
///
/// struct MyType {
///    foo: bool,
///    bar: u64,
///    wibble: String
/// }
///
/// impl EncodeAsType for MyType {
///     fn encode_as_type_to(&self, type_id: u32, types: &PortableRegistry, out: &mut Vec<u8>) -> Result<(), Error> {
///         Composite([
///             (Some("foo"), &self.foo as &dyn EncodeAsType),
///             (Some("bar"), &self.bar as &dyn EncodeAsType),
///             (Some("wibble"), &self.wibble as &dyn EncodeAsType)
///         ].into_iter()).encode_as_type_to(type_id, types, out)
///     }
/// }
/// ```
pub struct Composite<Vals>(pub Vals);

impl<'a, Vals> EncodeAsType for Composite<Vals>
where
    Vals: ExactSizeIterator<Item = (Option<&'a str>, &'a dyn EncodeAsType)> + Clone,
{
    fn encode_as_type_to(
        &self,
        type_id: u32,
        types: &PortableRegistry,
        out: &mut Vec<u8>,
    ) -> Result<(), Error> {
        let mut vals_iter = self.0.clone();
        let vals_iter_len = vals_iter.len();

        // Skip through any single field composites/tuples without names. If there
        // are names, we may want to line up input field(s) on them.
        let type_id = skip_through_single_unnamed_fields(type_id, types);

        let ty = types
            .resolve(type_id)
            .ok_or_else(|| Error::new(ErrorKind::TypeNotFound(type_id)))?;

        match &ty.type_def {
            // If we see a tuple type, it'll have more than one field else it'd have been skipped above.
            TypeDef::Tuple(tuple) => {
                // If there is exactly one val, it won't line up with the tuple then, so
                // try encoding one level in instead.
                if vals_iter_len == 1 {
                    return vals_iter
                        .next()
                        .unwrap()
                        .1
                        .encode_as_type_to(type_id, types, out);
                }

                let mut fields = tuple.fields.iter().map(|f| Field::unnamed(f.id));
                self.encode_as_fields_to(&mut fields, types, out)
            }
            // If we see a composite type, it has either named fields or !=1 unnamed fields.
            TypeDef::Composite(composite) => {
                // If vals are named, we may need to line them up with some named composite.
                // If they aren't named, we only care about lining up based on matching lengths.
                let is_named_vals = vals_iter.clone().any(|(name, _)| name.is_some());

                // If there is exactly one val that isn't named, then we know it won't line
                // up with this composite then, so try encoding one level in.
                if !is_named_vals && vals_iter_len == 1 {
                    return vals_iter
                        .next()
                        .unwrap()
                        .1
                        .encode_as_type_to(type_id, types, out);
                }

                let mut fields = composite
                    .fields
                    .iter()
                    .map(|f| Field::new(f.ty.id, f.name.as_deref()));
                self.encode_as_fields_to(&mut fields, types, out)
            }
            // We may have skipped through to some primitive or other type.
            _ => {
                // Rather than immediately giving up, we should at least see whether
                // we can skip one level in to our value and encode that.
                if vals_iter_len == 1 {
                    return vals_iter
                        .next()
                        .unwrap()
                        .1
                        .encode_as_type_to(type_id, types, out);
                }

                // If we get here, then it means the value we were given had more than
                // one field, and the type we were given was ultimately some one-field thing
                // that contained a non composite/tuple type, so it would never work out.
                Err(Error::new(ErrorKind::WrongShape {
                    actual: Kind::Tuple,
                    expected: type_id,
                }))
            }
        }
    }
}

impl<'a, Vals> EncodeAsFields for Composite<Vals>
where
    Vals: ExactSizeIterator<Item = (Option<&'a str>, &'a dyn EncodeAsType)> + Clone,
{
    fn encode_as_fields_to(
        &self,
        fields: &mut dyn FieldIter<'_>,
        types: &PortableRegistry,
        out: &mut Vec<u8>,
    ) -> Result<(), Error> {
        let vals_iter = self.0.clone();

        // Most of the time there aren't too many fields, so avoid allocation in most cases:
        let fields = smallvec::SmallVec::<[_; 16]>::from_iter(fields);

        // Both the target and source type have to have named fields for us to use
        // names to line them up.
        let is_named = {
            let is_target_named = fields.iter().any(|f| f.name().is_some());
            let is_source_named = vals_iter.clone().any(|(name, _)| name.is_some());
            is_target_named && is_source_named
        };

        if is_named {
            // target + source fields are named, so hash source values by name and
            // then encode to the target type by matching the names. If fields are
            // named, we don't even mind if the number of fields doesn't line up;
            // we just ignore any fields we provided that aren't needed.
            let source_fields_by_name: BTreeMap<&str, &dyn EncodeAsType> = vals_iter
                .map(|(name, val)| (name.unwrap_or(""), val))
                .collect();

            for field in fields {
                // Find the field in our source type:
                let name = field.name().unwrap_or("");
                let Some(value) = source_fields_by_name.get(name) else {
                    return Err(Error::new(ErrorKind::CannotFindField { name: name.to_string() }))
                };

                // Encode the value to the output:
                value
                    .encode_as_type_to(field.id(), types, out)
                    .map_err(|e| e.at_field(name.to_string()))?;
            }

            Ok(())
        } else {
            let fields_len = fields.len();

            // target fields aren't named, so encode by order only. We need the field length
            // to line up for this to work.
            if fields_len != vals_iter.len() {
                return Err(Error::new(ErrorKind::WrongLength {
                    actual_len: vals_iter.len(),
                    expected_len: fields_len,
                }));
            }

            for (idx, (field, (name, val))) in fields.iter().zip(vals_iter).enumerate() {
                val.encode_as_type_to(field.id(), types, out).map_err(|e| {
                    let loc = if let Some(name) = name {
                        Location::field(name.to_string())
                    } else {
                        Location::idx(idx)
                    };
                    e.at(loc)
                })?;
            }
            Ok(())
        }
    }
}

// Single unnamed fields carry no useful information and can be skipped through.
// Single named fields may still be useful to line up with named composites.
fn skip_through_single_unnamed_fields(type_id: u32, types: &PortableRegistry) -> u32 {
    let Some(ty) = types.resolve(type_id) else {
        return type_id
    };
    match &ty.type_def {
        TypeDef::Tuple(tuple) if tuple.fields.len() == 1 => {
            skip_through_single_unnamed_fields(tuple.fields[0].id, types)
        }
        TypeDef::Composite(composite)
            if composite.fields.len() == 1 && composite.fields[0].name.is_none() =>
        {
            skip_through_single_unnamed_fields(composite.fields[0].ty.id, types)
        }
        _ => type_id,
    }
}