1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
// Copyright (C) 2023 Parity Technologies (UK) Ltd. (admin@parity.io)
// This file is a part of the scale-encode crate.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//         http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use darling::FromAttributes;
use proc_macro2::TokenStream as TokenStream2;
use quote::{format_ident, quote};
use syn::{parse_macro_input, punctuated::Punctuated, DeriveInput};

// The default attribute name for attrs
const ATTR_NAME: &str = "encode_as_type";

// Macro docs in main crate; don't add any docs here.
#[proc_macro_derive(EncodeAsType, attributes(encode_as_type, codec))]
pub fn derive_macro(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
    let input = parse_macro_input!(input as DeriveInput);

    // parse top level attrs.
    let attrs = match TopLevelAttrs::parse(&input.attrs) {
        Ok(attrs) => attrs,
        Err(e) => return e.write_errors().into(),
    };

    derive_with_attrs(attrs, input).into()
}

fn derive_with_attrs(attrs: TopLevelAttrs, input: DeriveInput) -> TokenStream2 {
    // what type is the derive macro declared on?
    match &input.data {
        syn::Data::Enum(details) => generate_enum_impl(attrs, &input, details),
        syn::Data::Struct(details) => generate_struct_impl(attrs, &input, details),
        syn::Data::Union(_) => syn::Error::new(
            input.ident.span(),
            "Unions are not supported by the EncodeAsType macro",
        )
        .into_compile_error(),
    }
}

fn generate_enum_impl(
    attrs: TopLevelAttrs,
    input: &DeriveInput,
    details: &syn::DataEnum,
) -> TokenStream2 {
    let path_to_scale_encode = &attrs.crate_path;
    let path_to_type: syn::Path = input.ident.clone().into();
    let (impl_generics, ty_generics, where_clause) = handle_generics(&attrs, &input.generics);

    // For each variant we want to spit out a match arm.
    let match_arms = details.variants.iter().map(|variant| {
        let variant_name = &variant.ident;
        let variant_name_str = variant_name.to_string();

        let (matcher, composite) =
            fields_to_matcher_and_composite(path_to_scale_encode, &variant.fields);
        quote!(
            Self::#variant_name #matcher => {
                #path_to_scale_encode::Variant { name: #variant_name_str, fields: #composite }
                    .encode_as_type_to(
                        __encode_as_type_type_id,
                        __encode_as_type_types,
                        __encode_as_type_out
                    )
            }
        )
    });

    quote!(
        impl #impl_generics #path_to_scale_encode::EncodeAsType for #path_to_type #ty_generics #where_clause {
            #[allow(unused_variables)]
            fn encode_as_type_to(
                &self,
                // long variable names to prevent conflict with struct field names:
                __encode_as_type_type_id: u32,
                __encode_as_type_types: &#path_to_scale_encode::PortableRegistry,
                __encode_as_type_out: &mut #path_to_scale_encode::Vec<u8>
            ) -> Result<(), #path_to_scale_encode::Error> {
                match self {
                    #( #match_arms, )*
                    // This will never be encountered, but in case the enum has no variants
                    // the compiler will still want something to be spat out here:
                    _ => unreachable!()
                }
            }
        }
    )
}

fn generate_struct_impl(
    attrs: TopLevelAttrs,
    input: &DeriveInput,
    details: &syn::DataStruct,
) -> TokenStream2 {
    let path_to_scale_encode = &attrs.crate_path;
    let path_to_type: syn::Path = input.ident.clone().into();
    let (impl_generics, ty_generics, where_clause) = handle_generics(&attrs, &input.generics);

    let (matcher, composite) =
        fields_to_matcher_and_composite(path_to_scale_encode, &details.fields);

    quote!(
        impl #impl_generics #path_to_scale_encode::EncodeAsType for #path_to_type #ty_generics #where_clause {
            #[allow(unused_variables)]
            fn encode_as_type_to(
                &self,
                // long variable names to prevent conflict with struct field names:
                __encode_as_type_type_id: u32,
                __encode_as_type_types: &#path_to_scale_encode::PortableRegistry,
                __encode_as_type_out: &mut #path_to_scale_encode::Vec<u8>
            ) -> Result<(), #path_to_scale_encode::Error> {
                let #path_to_type #matcher = self;
                #composite.encode_as_type_to(
                    __encode_as_type_type_id,
                    __encode_as_type_types,
                    __encode_as_type_out
                )
            }
        }
        impl #impl_generics #path_to_scale_encode::EncodeAsFields for #path_to_type #ty_generics #where_clause {
            #[allow(unused_variables)]
            fn encode_as_fields_to(
                &self,
                // long variable names to prevent conflict with struct field names:
                __encode_as_type_fields: &mut dyn #path_to_scale_encode::FieldIter<'_>,
                __encode_as_type_types: &#path_to_scale_encode::PortableRegistry,
                __encode_as_type_out: &mut #path_to_scale_encode::Vec<u8>
            ) -> Result<(), #path_to_scale_encode::Error> {
                let #path_to_type #matcher = self;
                #composite.encode_as_fields_to(
                    __encode_as_type_fields,
                    __encode_as_type_types,
                    __encode_as_type_out
                )
            }
        }
    )
}

fn handle_generics<'a>(
    attrs: &TopLevelAttrs,
    generics: &'a syn::Generics,
) -> (
    syn::ImplGenerics<'a>,
    syn::TypeGenerics<'a>,
    syn::WhereClause,
) {
    let path_to_crate = &attrs.crate_path;
    let (impl_generics, ty_generics, where_clause) = generics.split_for_impl();

    let mut where_clause = where_clause.cloned().unwrap_or(syn::parse_quote!(where));

    if let Some(where_predicates) = &attrs.trait_bounds {
        // if custom trait bounds are given, append those to the where clause.
        where_clause.predicates.extend(where_predicates.clone());
    } else {
        // else, append our default EncodeAsType bounds to the where clause.
        for param in generics.type_params() {
            let ty = &param.ident;
            where_clause
                .predicates
                .push(syn::parse_quote!(#ty: #path_to_crate::EncodeAsType))
        }
    }

    (impl_generics, ty_generics, where_clause)
}

fn fields_to_matcher_and_composite(
    path_to_scale_encode: &syn::Path,
    fields: &syn::Fields,
) -> (TokenStream2, TokenStream2) {
    match fields {
        syn::Fields::Named(fields) => {
            let match_body = fields.named.iter().map(|f| {
                let field_name = &f.ident;
                quote!(#field_name)
            });
            let tuple_body = fields.named
                .iter()
                .filter(|f| !should_skip(&f.attrs))
                .map(|f| {
                    let field_name_str = f.ident.as_ref().unwrap().to_string();
                    let field_name = &f.ident;
                    quote!((Some(#field_name_str), #field_name as &dyn #path_to_scale_encode::EncodeAsType))
                });

            (
                quote!({#( #match_body ),*}),
                quote!(#path_to_scale_encode::Composite([#( #tuple_body ),*].into_iter())),
            )
        }
        syn::Fields::Unnamed(fields) => {
            let field_idents = fields
                .unnamed
                .iter()
                .enumerate()
                .map(|(idx, f)| (format_ident!("_{idx}"), f));

            let match_body = field_idents.clone().map(|(i, _)| quote!(#i));
            let tuple_body = field_idents
                .filter(|(_, f)| !should_skip(&f.attrs))
                .map(|(i, _)| quote!((None as Option<&'static str>, #i as &dyn #path_to_scale_encode::EncodeAsType)));

            (
                quote!((#( #match_body ),*)),
                quote!(#path_to_scale_encode::Composite([#( #tuple_body ),*].into_iter())),
            )
        }
        syn::Fields::Unit => (
            quote!(),
            quote!(#path_to_scale_encode::Composite(([] as [(Option<&'static str>, &dyn #path_to_scale_encode::EncodeAsType);0]).into_iter())),
        ),
    }
}

struct TopLevelAttrs {
    // path to the scale_encode crate, in case it's not a top level dependency.
    crate_path: syn::Path,
    // allow custom trait bounds to be used instead of the defaults.
    trait_bounds: Option<Punctuated<syn::WherePredicate, syn::Token!(,)>>,
}

impl TopLevelAttrs {
    fn parse(attrs: &[syn::Attribute]) -> darling::Result<Self> {
        use darling::FromMeta;

        #[derive(FromMeta)]
        struct TopLevelAttrsInner {
            #[darling(default)]
            crate_path: Option<syn::Path>,
            #[darling(default)]
            trait_bounds: Option<Punctuated<syn::WherePredicate, syn::Token!(,)>>,
        }

        let mut res = TopLevelAttrs {
            crate_path: syn::parse_quote!(::scale_encode),
            trait_bounds: None,
        };

        // look at each top level attr. parse any for encode_as_type.
        for attr in attrs {
            if !attr.path.is_ident(ATTR_NAME) {
                continue;
            }
            let meta = attr.parse_meta()?;
            let parsed_attrs = TopLevelAttrsInner::from_meta(&meta)?;

            res.trait_bounds = parsed_attrs.trait_bounds;
            if let Some(crate_path) = parsed_attrs.crate_path {
                res.crate_path = crate_path;
            }
        }

        Ok(res)
    }
}

// Checks if the attributes contain `skip`.
//
// NOTE: Since we only care about `skip` at the moment, we just expose this helper,
// but if we add more attrs we can expose `FieldAttrs` properly:
fn should_skip(attrs: &[syn::Attribute]) -> bool {
    #[derive(FromAttributes, Default)]
    #[darling(attributes(encode_as_type, codec))]
    struct FieldAttrs {
        #[darling(default)]
        skip: bool,
    }

    FieldAttrs::from_attributes(attrs).unwrap_or_default().skip
}