1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
// Copyright (C) 2024 Parity Technologies (UK) Ltd. (admin@parity.io)
// This file is a part of the scale-value crate.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#![allow(clippy::module_inception)]
use alloc::vec::Vec;
use codec::{Compact, Decode, Encode};
/// This macro makes it trivial to construct [`Bits`] from either 0 and 1 bit
/// literals, or booleans.
///
/// ```rust
/// use scale_bits::bits;
///
/// // Using 1 and 0 literals to represent the bits:
/// let bits = bits![1,1,0,1,0,1];
/// assert_eq!(bits.to_vec(), vec![true, true, false, true, false, true]);
///
/// // Using true and false to represent the bits:
/// let bits = bits![true, true, false, true, false, true];
/// assert_eq!(bits.to_vec(), vec![true, true, false, true, false, true]);
///
/// // These don't have to be literals:
/// let t = true;
/// let f = false;
/// let bits = bits![t,t,f,t,f,t];
/// assert_eq!(bits.to_vec(), vec![true, true, false, true, false, true]);
///
/// # // Empty bits should be fine:
/// # assert_eq!(bits![].to_vec(), Vec::<bool>::new());
/// #
/// # // Trailing ',' should be fine:
/// # assert_eq!(bits![0,].to_vec(), vec![false]);
/// # assert_eq!(bits![1,].to_vec(), vec![true]);
/// # assert_eq!(bits![0,1,].to_vec(), vec![false, true]);
/// # assert_eq!(bits![false,].to_vec(), vec![false]);
/// # assert_eq!(bits![true,].to_vec(), vec![true]);
/// # assert_eq!(bits![false,true,].to_vec(), vec![false, true]);
/// #
/// # // We can mix bools and bits inc expressions
/// # assert_eq!(bits![0,t,1,f].to_vec(), vec![false, true, true, false]);
/// ```
#[macro_export]
macro_rules! bits {
($($val:tt),* $(,)*) => {{
#[allow(unused_mut)]
let mut bits = $crate::bits::Bits::new();
$crate::bits!(__internal__ bits: $($val),*);
bits
}};
(__internal__ $bits:ident: 1 $(,$rest:tt)* $(,)?) => {{
$bits.push(true);
$crate::bits!(__internal__ $bits: $($rest,)*);
}};
(__internal__ $bits:ident: 0 $(,$rest:tt)* $(,)?) => {{
$bits.push(false);
$crate::bits!(__internal__ $bits: $($rest,)*);
}};
(__internal__ $bits:ident: $bool:expr $(,$rest:tt)* $(,)?) => {{
$bits.push($bool);
$crate::bits!(__internal__ $bits: $($rest,)*);
}};
(__internal__ $bits:ident: $(,)?) => {{
// Catch the "empty" case and end.
}};
}
/// This represents a sequence of boolean values, packed into bits.
///
/// One of the defining features of this type is that it SCALE encodes and decodes into an
/// identical representation to a `BitVec<u8, Lsb0>`, and has matching a [`scale_info::TypeInfo`]
/// implementation to align with this. This allows it to be used in place of `BitVec<u8, Lsb0>`
/// when you need something with an identical SCALE representation and a simple API and don't wish
/// to pull in the `bitvec` crate.
///
/// In addition to this, we can use the [`crate::scale::Format`] type to encode and decode [`Bits`]
/// in the same way as `BitVec`'s do with order types of `Lsb0` and `Msb0`, and store types of
/// `u8`, `u16`, and `u32`.
///
/// With the `serde` feature enabled we can also serialize and seserialize [`Bits`] from sequences
/// of booleans.
///
/// # Example
///
/// ```rust
/// use scale_bits::bits::Bits;
///
/// let mut bits = Bits::new();
/// bits.push(true);
/// bits.push(false);
/// bits.push(false);
///
/// assert_eq!(bits.len(), 3);
/// ```
///
/// Converting to and from `Vec<bool>`:
///
/// ```rust
/// use scale_bits::bits::Bits;
///
/// let bools = vec![true, false, true, false, true];
/// let bits: Bits = bools.into_iter().collect();
///
/// let new_bools: Vec<bool> = bits.into_iter().collect();
/// assert_eq!(new_bools, vec![true, false, true, false, true]);
/// ```
#[derive(Clone, PartialEq, Eq, Debug, Default)]
pub struct Bits {
pub(crate) storage: Vec<u8>,
// Number of bits stored in the last byte.
pub(crate) bits_in_last_byte: usize,
}
impl Bits {
/// Create a new empty list of bits. This does not allocate.
pub fn new() -> Self {
Self::default()
}
/// Create a new empty list of bits. Pre-allocates enough space for
/// the number of bits provided here.
pub fn with_capacity(num_bits: usize) -> Self {
let mut num_bytes = num_bits / 8;
// the above division rounds down, so add another byte
// if we don't have an exact multiple of 8 num_bits.
let is_exact_multiple_of_8 = num_bits & 0b111 == 0;
if !is_exact_multiple_of_8 {
num_bytes += 1;
}
Bits { storage: Vec::with_capacity(num_bytes), bits_in_last_byte: 0 }
}
/// Returns true if no bits are stored.
///
/// # Example
///
/// ```rust
/// use scale_bits::bits::Bits;
///
/// let mut bits = Bits::new();
/// assert!(bits.is_empty());
///
/// bits.push(true);
/// assert!(!bits.is_empty());
///
/// bits.pop();
/// assert!(bits.is_empty());
/// ```
pub fn is_empty(&self) -> bool {
self.storage.is_empty()
}
/// Return the number of bits stored.
///
/// # Example
///
/// ```rust
/// use scale_bits::bits::Bits;
///
/// let mut bits = Bits::new();
/// assert_eq!(bits.len(), 0);
///
/// bits.push(true);
/// bits.push(false);
/// bits.push(true);
/// assert_eq!(bits.len(), 3);
///
/// bits.pop();
/// bits.pop();
/// assert_eq!(bits.len(), 1);
pub fn len(&self) -> usize {
let len = self.storage.len();
// -1 below so explicit return is zero.
if len == 0 {
return 0;
}
// minus the last byte worth and then add on only the bits we've
// stored so far in it.
(len - 1) * 8 + self.bits_in_last_byte
}
/// Push new bits to the end of the list.
///
/// # Example
///
/// ```rust
/// use scale_bits::{ bits::Bits, bits };
///
/// let mut bs = Bits::new();
/// bs.push(true);
/// bs.push(false);
/// bs.push(true);
///
/// assert_eq!(bs, bits![1,0,1]);
/// ```
pub fn push(&mut self, b: bool) {
let bit_val: u8 = match b {
true => 1,
false => 0,
};
match self.bits_in_last_byte {
// empty storage is the only time we see 0
// and a full last byte is when we see 8. In
// both cases we start a new byte with our 1
// value.
0 | 8 => {
self.storage.push(bit_val);
self.bits_in_last_byte = 1;
}
// Otherwise, get the last byte and add our
// bit in at the right offset.
n => {
let byte = self.storage.last_mut().expect("should be a byte");
*byte |= bit_val << n;
self.bits_in_last_byte += 1;
}
}
}
/// Remove bits from the end of the list, returning them
/// if they are present.
///
/// # Example
///
/// ```rust
/// use scale_bits::{ bits::Bits, bits };
///
/// let mut bs = bits![true, false, true, true];
/// assert_eq!(bs.pop(), Some(true));
/// assert_eq!(bs.pop(), Some(true));
/// assert_eq!(bs.pop(), Some(false));
/// assert_eq!(bs.pop(), Some(true));
/// assert_eq!(bs.pop(), None);
/// assert_eq!(bs.pop(), None);
/// ```
pub fn pop(&mut self) -> Option<bool> {
let last_byte = self.storage.last_mut()?;
// 0 bits in last byte should never happen. minus one so:
// - bits == 1? don't right shift
// - bits == 2? shift the one bit before it off
// - .. and so on.
let right_shift_amount = self.bits_in_last_byte - 1;
let res = match (*last_byte >> right_shift_amount) & 1 {
1 => true,
0 => false,
_ => unreachable!("Can only be 0 or 1 owing to &1"),
};
// zero out the entry we're returning.
*last_byte ^= 1 << right_shift_amount;
// decrement our count of bits in the last byte:
self.bits_in_last_byte -= 1;
// if 0, remove the byte from the vec entirely:
if self.bits_in_last_byte == 0 {
self.storage.pop();
if self.storage.is_empty() {
self.bits_in_last_byte = 0;
} else {
self.bits_in_last_byte = 8;
}
}
Some(res)
}
/// Retrieve a bit at a given index, returning `None` if no bit exists
/// at that index.
///
/// # Example
///
/// ```rust
/// use scale_bits::bits;
///
/// let bs = bits![true, false, true, true];
/// assert_eq!(bs.get(0), Some(true));
/// assert_eq!(bs.get(1), Some(false));
/// assert_eq!(bs.get(2), Some(true));
/// assert_eq!(bs.get(3), Some(true));
/// assert_eq!(bs.get(4), None);
/// ```
pub fn get(&self, idx: usize) -> Option<bool> {
// Bail early if empty storage since we'll expect
// at least one item to be stored below.
if self.storage.is_empty() {
return None;
}
let byte_idx = idx / 8;
// Dividing rounds down; taking last 3 bits gives us that precision back.
let bit_in_byte = idx & 0b111;
// Expect at least 1 item to be stored. If we're accessing
// the last byte, check we have stored enough bits in it.
if byte_idx == self.storage.len() - 1 && bit_in_byte >= self.bits_in_last_byte {
return None;
}
let byte = *self.storage.get(byte_idx)?;
match (byte >> bit_in_byte) & 1 {
0 => Some(false),
1 => Some(true),
_ => unreachable!("Can only be 0 or 1 owing to &1"),
}
}
/// Iterate over each bit in order, returning `true` or `false` for each.
///
/// # Example
///
/// ```rust
/// use scale_bits::bits;
///
/// let bs = bits![true, false, true, true];
///
/// let v: Vec<bool> = bs.iter().collect();
/// assert_eq!(v, vec![true, false, true, true]);
/// ```
pub fn iter(&'_ self) -> BitsIter<'_> {
BitsIter { pos: 0, bits: self }
}
/// Convert our bits into a `Vec<bool>`.
///
/// # Example
///
/// ```rust
/// use scale_bits::bits;
///
/// let bs = bits![true, false, true, true].to_vec();
/// assert_eq!(bs, vec![true, false, true, true]);
/// ```
pub fn to_vec(self) -> Vec<bool> {
self.into_iter().collect()
}
}
impl core::iter::IntoIterator for Bits {
type Item = bool;
type IntoIter = BitsIntoIter;
fn into_iter(self) -> Self::IntoIter {
BitsIntoIter { pos: 0, bits: self }
}
}
/// Returned from calling `into_iter` on [`Bits`] via the
/// [`std::iter::IntoIterator`] trait. Allows iteration over
/// each stored bit.
#[derive(Clone, Debug)]
pub struct BitsIntoIter {
pos: usize,
bits: Bits,
}
impl Iterator for BitsIntoIter {
type Item = bool;
fn next(&mut self) -> Option<Self::Item> {
let next = self.bits.get(self.pos)?;
self.pos += 1;
Some(next)
}
fn size_hint(&self) -> (usize, Option<usize>) {
let len = self.bits.len() - self.pos;
(len, Some(len))
}
}
impl ExactSizeIterator for BitsIntoIter {}
/// Returned from calling [`Bits::iter()`]. Allows iteration
/// over each stored bit.
#[derive(Copy, Clone, Debug)]
pub struct BitsIter<'a> {
pos: usize,
bits: &'a Bits,
}
impl<'a> Iterator for BitsIter<'a> {
type Item = bool;
fn next(&mut self) -> Option<Self::Item> {
let next = self.bits.get(self.pos)?;
self.pos += 1;
Some(next)
}
fn size_hint(&self) -> (usize, Option<usize>) {
let len = self.bits.len() - self.pos;
(len, Some(len))
}
}
impl<'a> ExactSizeIterator for BitsIter<'a> {}
impl core::iter::FromIterator<bool> for Bits {
fn from_iter<T: IntoIterator<Item = bool>>(iter: T) -> Self {
let iter = iter.into_iter();
// if we know the max size, make that space available.
// otherwise make at least the min size available.
let num_bits_to_alloc_for = match iter.size_hint() {
(_, Some(max)) => max,
(min, None) => min,
};
let mut bits = Bits::with_capacity(num_bits_to_alloc_for);
for b in iter {
bits.push(b);
}
bits
}
}
impl Decode for Bits {
fn decode<I: codec::Input>(input: &mut I) -> Result<Self, codec::Error> {
let len_bits = Compact::<u32>::decode(input)?.0 as usize;
let remainder = len_bits & 0b111;
let len = len_bits / 8 + if remainder > 0 { 1 } else { 0 };
// Just a little safety in case the encoding is naff/malicious; don't
// pre-allocate more than 1kb to store the bits into.
const MAX_PRE_ALLOC_BYTES: usize = 1024;
let prealloc_len = len.min(MAX_PRE_ALLOC_BYTES);
let mut storage = Vec::with_capacity(prealloc_len);
for _ in 0..len {
// THe "native" decoding/encoding of bits is equal to a BitVec<u8, Lsb0>.
// We just push/read the stored bytes to encode/decode to this format.
let byte = input.read_byte()?;
storage.push(byte);
}
// if length was greater than 0 and remainder == 0, bits_in_last_byte must be
// 8 (ie the last byte is full and no remainder). Else, bits_in_last_byte is
// equal to the remainder.
let bits_in_last_byte = if !storage.is_empty() && remainder == 0 { 8 } else { remainder };
Ok(Bits { storage, bits_in_last_byte })
}
}
impl Encode for Bits {
fn size_hint(&self) -> usize {
self.encoded_size()
}
fn encode(&self) -> Vec<u8> {
let mut r = Vec::with_capacity(self.size_hint());
Compact(self.len() as u32).encode_to(&mut r);
for byte in &self.storage {
r.push(*byte);
}
r
}
fn encoded_size(&self) -> usize {
// encoding is just compact encoded number of bits and then the bytes to store them all,
// rounded to u8 because we mirror the encoding for a BitVec<u8, Lsb0>.
let compact_byte_len = Compact(self.len() as u32).encoded_size();
compact_byte_len + self.storage.len()
}
}
#[cfg(feature = "scale-info")]
mod type_info {
use scale_info::{build::Fields, Path, Type, TypeDefBitSequence, TypeInfo};
impl TypeInfo for super::Bits {
type Identity = Self;
fn type_info() -> Type {
// Copied from `scale-info`'s bitvec impls; this avoids us needing
// to import bitvec but ensures we're compatible in terms of the type def.
enum Lsb0 {}
impl TypeInfo for Lsb0 {
type Identity = Self;
fn type_info() -> Type {
Type::builder()
.path(Path::new("Lsb0", "bitvec::order"))
.composite(Fields::unit())
}
}
TypeDefBitSequence::new::<u8, Lsb0>().into()
}
}
}