1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
// Copyright (C) 2022 Parity Technologies (UK) Ltd. (admin@parity.io)
// This file is a part of the scale-value crate.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Ths module allows [`Bits`] to be dynamically encoded and decoded into/from a given
//! [`Format`]. The [`Format`] can either be provided manually, or extracted from
//! [`scale_info`] type information.
use scale_info::{
TypeDef,
TypeDefBitSequence,
TypeDefPrimitive,
form::PortableForm,
PortableRegistry,
};
use codec::{
Compact,
Decode,
Encode,
Error as CodecError,
};
use crate::Bits;
use crate::utils::iter_bits::{
iter_u16_lsb0,
iter_u16_msb0,
iter_u32_lsb0,
iter_u32_msb0,
iter_u8_msb0,
};
use crate::utils::iter_from_bits::{
iter_bits_to_u16_lsb,
iter_bits_to_u16_msb,
iter_bits_to_u32_lsb,
iter_bits_to_u32_msb,
iter_bits_to_u8_msb,
};
/// A description of a format to encode/decode [`Bits`] to/from.
pub struct Format {
store: StoreType,
order: OrderType
}
impl Format {
/// Define a new format by providing a store and order.
///
/// # Example
///
/// ```rust
/// use scale_bits::dynamic::{ Format, StoreType, OrderType };
///
/// let format = Format::new(StoreType::U8, OrderType::Lsb0);
/// ```
pub fn new(store: StoreType, order: OrderType) -> Self {
Format { store, order }
}
/// Use metadata to obtain details about the format.
pub fn from_metadata(
ty: &TypeDefBitSequence<PortableForm>,
types: &PortableRegistry,
) -> Result<Format, BitsDetailsError> {
let bit_store_ty = ty.bit_store_type().id();
let bit_order_ty = ty.bit_order_type().id();
// What is the backing store type expected?
let bit_store_def = types
.resolve(bit_store_ty)
.ok_or(BitsDetailsError::StoreTypeNotFound(bit_store_ty))?
.type_def();
// What is the bit order type expected?
let bit_order_def = types
.resolve(bit_order_ty)
.ok_or(BitsDetailsError::OrderTypeNotFound(bit_order_ty))?
.path()
.ident()
.ok_or(BitsDetailsError::NoBitOrderIdent)?;
let bit_store_out = match bit_store_def {
TypeDef::Primitive(TypeDefPrimitive::U8) => Some(StoreType::U8),
TypeDef::Primitive(TypeDefPrimitive::U16) => Some(StoreType::U16),
TypeDef::Primitive(TypeDefPrimitive::U32) => Some(StoreType::U32),
// TypeDef::Primitive(TypeDefPrimitive::U64) => Some(BitStoreTy::U64),
_ => None,
}
.ok_or_else(|| BitsDetailsError::StoreTypeNotSupported(format!("{bit_store_def:?}")))?;
let bit_order_out = match &*bit_order_def {
"Lsb0" => Some(OrderType::Lsb0),
"Msb0" => Some(OrderType::Msb0),
_ => None,
}
.ok_or(BitsDetailsError::OrderTypeNotSupported(bit_order_def))?;
Ok(Format { store: bit_store_out, order: bit_order_out })
}
/// Given some number of bits, how many bytes, in total, would it take to encode that number of
/// bits given the specified format.
///
/// # Example
///
/// ```rust
/// use scale_bits::{ Bits, bits, dynamic::{ Format, StoreType, OrderType } };
///
/// let bits = bits![1,0,1,1,0,1,0,1,0,0,1];
/// let format = Format::new(StoreType::U8, OrderType::Lsb0);
///
/// // Encode bits with a given format:
/// let mut out = vec![];
/// format.encode_bits_to(&bits, &mut out);
///
/// // `encoded_size()` returns the same length without needing to allocate/encode:
/// let expected_len = format.encoded_size(bits.len());
/// assert_eq!(out.len(), expected_len);
/// ```
pub fn encoded_size(&self, number_of_bits: usize) -> usize {
// How many bytes would it take to encode the number of bits (this comes first in the encoding):
let compact_len = Compact(number_of_bits as u32).encoded_size();
// How many bytes would be used to encode that number of bits given our store size?
let (number_of_bytes, _) = self.store.byte_len_from_bit_len(number_of_bits);
compact_len + number_of_bytes
}
/// Encode the provided [`Bits`] to the output in the given format.
///
/// # Example
///
/// ```rust
/// use scale_bits::{ Bits, bits, dynamic::{ Format, StoreType, OrderType } };
///
/// let bits = bits![1,0,1,1,0,1,0,1,0,0,1];
/// let format = Format::new(StoreType::U8, OrderType::Lsb0);
///
/// // SCALE encode bits into the chosen format:
/// let mut out = vec![];
/// format.encode_bits_to(&bits, &mut out);
/// ```
pub fn encode_bits_to(&self, bits: &Bits, out: &mut Vec<u8>) {
match (self.store, self.order) {
// The "native" format that Bits is also in, so we just use the base
// encode impl.
(StoreType::U8, OrderType::Lsb0) => {
bits.encode_to(out);
},
// For every other impl, we iterate over the bits and push them to the output
// in the correct format.
(StoreType::U8, OrderType::Msb0) => {
Compact(bits.len() as u32).encode_to(out);
for byte in iter_bits_to_u8_msb(bits.iter()) {
byte.encode_to(out);
}
},
(StoreType::U16, OrderType::Lsb0) => {
Compact(bits.len() as u32).encode_to(out);
for byte in iter_bits_to_u16_lsb(bits.iter()) {
byte.encode_to(out);
}
},
(StoreType::U16, OrderType::Msb0) => {
Compact(bits.len() as u32).encode_to(out);
for byte in iter_bits_to_u16_msb(bits.iter()) {
byte.encode_to(out);
}
},
(StoreType::U32, OrderType::Lsb0) => {
Compact(bits.len() as u32).encode_to(out);
for byte in iter_bits_to_u32_lsb(bits.iter()) {
byte.encode_to(out);
}
},
(StoreType::U32, OrderType::Msb0) => {
Compact(bits.len() as u32).encode_to(out);
for byte in iter_bits_to_u32_msb(bits.iter()) {
byte.encode_to(out);
}
},
}
}
/// Decode the provided bytes into [`Bits`] assuming the given format.
///
/// # Example
///
/// ```rust
/// use scale_bits::{ Bits, bits, dynamic::{ Format, StoreType, OrderType } };
///
/// let bits = bits![1,0,1,1,0,1,0,1,0,0,1];
/// let format = Format::new(StoreType::U8, OrderType::Lsb0);
///
/// // SCALE encode bits into the chosen format:
/// let mut out = vec![];
/// format.encode_bits_to(&bits, &mut out);
///
/// // Then, we can decode these back given the same format:
/// let new_bits = format.decode_bits_from(&mut &*out).unwrap();
///
/// assert_eq!(bits, new_bits);
/// ```
pub fn decode_bits_from(&self, bytes: &mut &[u8]) -> Result<Bits, CodecError> {
let bits = match (self.store, self.order) {
// The "native" format that Bits is also in, so we just use the base
// decode impl.
(StoreType::U8, OrderType::Lsb0) => {
Bits::decode(bytes)?
},
// For every other impl, we iterate over the bits and push them to our
// Bits struct.
(StoreType::U8, OrderType::Msb0) => {
let bit_len = Compact::<u32>::decode(bytes)?.0 as usize;
let (byte_len, _) = StoreType::U8.byte_len_from_bit_len(bit_len);
let mut bits = Bits::with_capacity(bit_len);
for _ in 0..byte_len {
let byte = u8::decode(bytes)?;
iter_u8_msb0(byte).for_each(|b| bits.push(b));
}
bits
},
(StoreType::U16, OrderType::Lsb0) => {
let bit_len = Compact::<u32>::decode(bytes)?.0 as usize;
let (byte_len, _) = StoreType::U16.byte_len_from_bit_len(bit_len);
let mut bits = Bits::with_capacity(bit_len);
for _ in 0..byte_len {
let byte = u16::decode(bytes)?;
iter_u16_lsb0(byte).for_each(|b| bits.push(b));
}
bits
},
(StoreType::U16, OrderType::Msb0) => {
let bit_len = Compact::<u32>::decode(bytes)?.0 as usize;
let (byte_len, _) = StoreType::U16.byte_len_from_bit_len(bit_len);
let mut bits = Bits::with_capacity(bit_len);
for _ in 0..byte_len {
let byte = u16::decode(bytes)?;
iter_u16_msb0(byte).for_each(|b| bits.push(b));
}
bits
},
(StoreType::U32, OrderType::Lsb0) => {
let bit_len = Compact::<u32>::decode(bytes)?.0 as usize;
let (byte_len, _) = StoreType::U32.byte_len_from_bit_len(bit_len);
let mut bits = Bits::with_capacity(bit_len);
for _ in 0..byte_len {
let byte = u32::decode(bytes)?;
iter_u32_lsb0(byte).for_each(|b| bits.push(b));
}
bits
},
(StoreType::U32, OrderType::Msb0) => {
let bit_len = Compact::<u32>::decode(bytes)?.0 as usize;
let (byte_len, _) = StoreType::U32.byte_len_from_bit_len(bit_len);
let mut bits = Bits::with_capacity(bit_len);
for _ in 0..byte_len {
let byte = u32::decode(bytes)?;
iter_u32_msb0(byte).for_each(|b| bits.push(b));
}
bits
},
};
Ok(bits)
}
}
/// This is a runtime representation of the order that bits will be written
/// to the specified [`StoreType`].
///
/// - [`OrderType::Lsb0`] means that we write to the least significant bit first
/// and then work our way up to the most significant bit as we push new bits.
/// - [`OrderType::Msb0`] means that we write to the most significant bit first
/// and then work our way down to the least significant bit as we push new bits.
///
/// These are equivalent to `bitvec`'s `order::Lsb0` and `order::Msb0`.
#[derive(Copy, Clone, PartialEq, Debug)]
pub enum OrderType {
/// Least significant bit first.
Lsb0,
/// Most significant bit first.
Msb0,
}
/// This is a runtime representation of the store type that we're targeting. These
/// are equivalent to the `bitvec` store types `u8`, `u16` and so on.
#[derive(Copy, Clone, PartialEq, Debug)]
pub enum StoreType {
/// Equivalent to [`u8`].
U8,
/// Equivalent to [`u16`].
U16,
/// Equivalent to [`u32`].
U32,
}
impl StoreType {
/// Calculate the length in bytes given a length in bits and a store type.
/// Return a tuple of the byte length needed, and a count of the bits in the last byte.
pub(crate) fn byte_len_from_bit_len(self, bit_len: usize) -> (usize, usize) {
match self {
StoreType::U8 => {
let remainder: usize = bit_len & 0b111;
let byte_len = bit_len / 8 + if remainder > 0 { 1 } else { 0 };
(byte_len, remainder)
},
StoreType::U16 => {
let remainder: usize = bit_len & 0b1111;
let byte_len = bit_len / 16 + if remainder > 0 { 1 } else { 0 };
(byte_len, remainder)
},
StoreType::U32 => {
let remainder: usize = bit_len & 0b11111;
let byte_len = bit_len / 32 + if remainder > 0 { 1 } else { 0 };
(byte_len, remainder)
},
}
}
}
/// An error that can occur when we try to encode or decode to a SCALE bit sequence type.
#[derive(Debug, Clone, thiserror::Error, PartialEq)]
pub enum BitsDetailsError {
/// The registry did not contain the bit order type listed.
#[error("Bit order type {0} not found in registry")]
OrderTypeNotFound(u32),
/// The registry did not contain the bit store type listed.
#[error("Bit store type {0} not found in registry")]
StoreTypeNotFound(u32),
/// The bit order type did not have a valid identifier/name.
#[error("Bit order cannot be identified")]
NoBitOrderIdent,
/// The bit store type that we found was not what we expected (a primitive u8/u16/u32/u64).
#[error("Bit store type {0} is not supported")]
StoreTypeNotSupported(String),
/// The bit order type name that we found was not what we expected ("Lsb0" or "Msb0").
#[error("Bit order type {0} is not supported")]
OrderTypeNotSupported(String),
}