1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
#![allow(clippy::len_zero)]
#![deny(warnings)]
#![deny(missing_docs)]
#![allow(clippy::needless_late_init)]
/*!
This is the documentation for `savefile-abi`
# Welcome to savefile-abi!
Savefile-abi is a crate that is primarily meant to help building binary plugins using Rust.
Note! This is a work-in-progress.
# Example
Let's say we have a crate that defines this trait for adding u32s:
*InterfaceCrate*
```
extern crate savefile_derive;
use savefile_derive::savefile_abi_exportable;
#[savefile_abi_exportable(version=0)]
pub trait AdderInterface {
    fn add(&self, x: u32, y: u32) -> u32;
}
```
Now, we want to implement addition in a different crate, compile it to a shared library
(.dll or .so), and use it in the first crate (or some other crate):
*ImplementationCrate*
```
 # extern crate savefile_derive;
 # use savefile_derive::{savefile_abi_exportable};
 # #[savefile_abi_exportable(version=0)]
 # pub trait AdderInterface {
 #   fn add(&self, x: u32, y: u32) -> u32;
 # }
 #
use savefile_derive::{savefile_abi_export};
#[derive(Default)]
struct MyAdder { }
impl AdderInterface for MyAdder {
    fn add(&self, x: u32, y: u32) -> u32 {
        x + y
    }
}
/// Export this implementation as the default-implementation for
/// the interface 'AdderInterface', for the current library.
savefile_abi_export!(MyAdder, AdderInterface);
```
We add the following to Cargo.toml in our implementation crate:
```toml
[lib]
crate-type = ["cdylib"]
```
Now, in our application, we add a dependency to *InterfaceCrate*, but not
to *ImplementationCrate*.
We then load the implementation dynamically at runtime:
*ApplicationCrate*
```rust,no_run
 # extern crate savefile_derive;
 # mod adder_interface {
 #   use savefile_derive::savefile_abi_exportable;
 #   #[savefile_abi_exportable(version=0)]
 #   pub trait AdderInterface {
 #     fn add(&self, x: u32, y: u32) -> u32;
 #   }
 # }
 #
use adder_interface::AdderInterface;
use savefile_abi::AbiConnection;
// Load the implementation of `dyn AdderInterface` that was published
// using the `savefile_abi_export!` above.
let connection = AbiConnection::<dyn AdderInterface>
        ::load_shared_library("ImplementationCrate.so").unwrap();
// The type `AbiConnection::<dyn AdderInterface>` implements
// the `AdderInterface`-trait, so we can use it to call its methods.
assert_eq!(connection.add(1, 2), 3);
```
# More advanced examples
Interface containing closure arguments:
```
 # extern crate savefile_derive;
 # use savefile_derive::savefile_abi_exportable;
#[savefile_abi_exportable(version=0)]
pub trait CallMeBack {
    fn call_me(&self, x: &dyn Fn(u32) -> u32) -> u32;
    fn call_me_mut(&self, x: &mut dyn FnMut(u32) -> u32) -> u32;
}
```
Interface containing more complex types:
```
 # extern crate savefile_derive;
 # use savefile_derive::savefile_abi_exportable;
 # use std::collections::{HashMap, BinaryHeap};
#[savefile_abi_exportable(version=0)]
pub trait Processor {
    fn process(&self, x: &HashMap<String,String>, parameters: f32) -> BinaryHeap<u32>;
}
```
Interface containing user defined types:
```
 # extern crate savefile_derive;
 # use savefile_derive::{Savefile,savefile_abi_exportable};
 # use std::collections::{HashMap, BinaryHeap};
#[derive(Savefile)]
pub struct MyCustomType {
    pub name: String,
    pub age: u8,
    pub length: f32,
}
#[savefile_abi_exportable(version=0)]
pub trait Processor {
    fn insert(&self, x: &MyCustomType) -> Result<u32, String>;
}
```
# Versioning
Let's say the last example from the previous chapter needed to be evolved.
The type now needs a 'city' field.
We can add this while retaining compatibility with clients expecting the old API:
```
extern crate savefile_derive;
 # use savefile::prelude::SavefileError;
 # use savefile_derive::{Savefile,savefile_abi_exportable};
 # use savefile_abi::verify_compatiblity;
 # use std::collections::{HashMap, BinaryHeap};
#[derive(Savefile)]
pub struct MyCustomType {
    pub name: String,
    pub age: u8,
    pub length: f32,
    #[savefile_versions="1.."]
    pub city: String,
}
#[savefile_abi_exportable(version=1)]
pub trait Processor {
    fn insert(&self, x: &MyCustomType) -> Result<u32, String>;
}
#[cfg(test)]
{
    #[test]
    pub fn test_backward_compatibility() {
       // Automatically verify backward compatibility isn't broken.
       // Schemas for each version are stored in directory 'schemas',
       // and consulted on next run to ensure no change.
       // You should check the schemas in to source control.
       // If check fails for an unreleased version, just remove the schema file from
       // within 'schemas' directory.
       verify_compatiblity::<dyn Processor>("schemas").unwrap()
    }
}
```
Older clients, not aware of the 'city' field, can still call newer implementations. The 'city'
field will receive an empty string (Default::default()). Newer clients, calling older implementations,
will simply, automatically, omit the 'city' field.
# Background
Savefile-abi is a crate that is primarily meant to help building binary plugins using Rust.
The primary usecase is that a binary rust program is to be shipped to some customer,
who should then be able to load various binary modules into the program at runtime.
Savefile-abi defines ABI-stable rust-to-rust FFI for calling between a program and
a runtime-loaded shared library.
For now, both the main program and the plugins need to be written in rust. They can,
however, be written using different versions of the rust compiler, and the API may
be allowed to evolve. That is, data structures can be modified, and methods can be added
(or removed).
The reason savefile-abi is needed, is that rust does not have a stable 'ABI'. This means that
if shared libraries are built using rust, all libraries must be compiled by the same version of
rust, using the exact same source code. This means that rust cannot, 'out of the box', support
a binary plugin system, without something like savefile-abi. This restriction may be lifted
in the future, which would make this crate (savefile-abi) mostly redundant.
Savefile-abi does not solve the general 'stable ABI'-problem. Rather, it defines a limited
set of features, which allows useful calls between shared libraries, without allowing any
and all rust construct.
# Why another stable ABI-crate for Rust?
There are other crates also providing ABI-stability. Savefile-abi has the following properties:
 * It is able to completely specify the protocol used over the FFI-boundary. I.e, it can
isolate two shared libraries completely, making minimal assumptions about data type
memory layouts.
 * When it cannot prove that memory layouts are identical, it falls back to (fast) serialization.
This has a performance penalty, and may require heap allocation.
 * It tries to require a minimum of configuration needed by the user, while still being safe.
 * It supports versioning of data structures (with a performance penalty).
 * It supports trait objects as arguments, including FnMut() and Fn().
 * Boxed trait objects, including Fn-traits, can be transferred across FFI-boundaries, passing
   ownership, while still not invoking UB if the object is dropped on the other side of the
   FFI-boundary.
 * It requires enums to be `#[repr(uX)]` in order to pass them by reference. Other enums
will still work correctly, but will be serialized under the hood at a performance penalty.
 * It places severe restrictions on types of arguments, since they must be serializable
using the Savefile-crate for serialization. Basically, arguments must be 'simple', in that
they must own all their contents, and free of cycles. I.e, the type of the arguments must
have lifetime `&'static`. Note, arguments may still be references, and the contents of the
argument types may include Box, Vec etc, so this does not mean that only primitive types are
supporte or anything like that.
Arguments cannot be mutable, since if serialization is needed, it would be impractical to detect and
handle updates to arguments made by callee. This said, arguments can still have types such as
HashMap, IndexMap, Vec, String and custom defined structs or enums.
# How it all works
The basic principle is that savefile-abi makes sure to send function parameters in a way
that is certain to be understood by the code on the other end of the FFI-boundary.
It analyses if memory layouts of reference-parameters are the same on both sides of the
FFI-boundary, and if they are, the references are simply copied. In all other cases, including
all non-reference parameters, the data is simply serialized and sent as a binary buffer.
The callee cannot rely on any particular lifetimes of arguments, since if the arguments
were serialized, the arguments the callee sees will only have a lifetime of a single call,
regardless of the original lifetime. Savefile-abi inspects all lifetimes and ensures
that reference parameters don't have non-default lifetimes. Argument types must have static
lifetimes (otherwise they can't be serialized). The only exception is that the argument
can be reference types, but the type referenced must itself be `&'static`.
# About Safety
Savefile-Abi uses copious amounts of unsafe code. It has a test suite, and the
test suite passes with miri.
One thing to be aware of is that, at present, the AbiConnection::load_shared_library-method
is not marked as unsafe. However, if the .so-file given as argument is corrupt, using this
method can cause any amount of UB. Thus, it could be argued that it should be marked unsafe.
However, the same is true for _any_ shared library used by a rust program, including the
system C-library. It is also true that rust programs rely on the rust
compiler being implemented correctly. Thus, it has been
judged that the issue of corrupt binary files is beyond the scope of safety for Savefile-Abi.
As long as the shared library is a real Savefile-Abi shared library, it should be sound to use,
even if it contains code that is completely incompatible. This will be detected at runtime,
and either AbiConnection::load_shared_library will panic, or any calls made after will panic.
# About Vec and String references
Savefile-Abi allows passing references containing Vec and/or String across the FFI-boundary.
This is not guaranteed to be sound. However, Savefile-Abi uses heuristics to determine
the actual memory layout of both Vec and String, and verifies that the two libraries agree
on the layout of Vec. If they do not, the data is serialized instead. Also, since
parameters can never be mutable in Savefile-abi (except for closures), we know
the callee is not going to be freeing something allocated by the caller. Parameters
called by value are always serialized.
*/
extern crate savefile;
extern crate savefile_derive;
use savefile::{
    diff_schema, load_file_noschema, load_noschema, save_file_noschema, AbiMethodInfo, AbiTraitDefinition, Deserialize,
    Deserializer, LittleEndian, SavefileError, Schema, Serializer, CURRENT_SAVEFILE_LIB_VERSION,
};
use std::collections::hash_map::Entry;
use std::collections::HashMap;
use std::hash::Hash;
use std::io::{Cursor, Read, Write};
use std::marker::PhantomData;
use std::mem::MaybeUninit;
use std::panic::catch_unwind;
use std::path::Path;
use std::ptr::null;
use std::sync::{Mutex, MutexGuard};
use std::{ptr, slice};
use std::any::TypeId;
use byteorder::ReadBytesExt;
use libloading::{Library, Symbol};
/// This trait is meant to be exported for a 'dyn SomeTrait'.
/// It can be automatically implemented by using the
/// macro `#[savefile_abi_exportable(version=0)]` on
/// a trait that is to be exportable.
///
/// NOTE!
/// If trait `MyExampleTrait` is to be exportable, the trait `AbiExportable` must
/// be implemented for `dyn MyExampleTrait`.
///
/// # Safety
/// The implementor must:
///  * Make sure that the ABI_ENTRY function implements all parts of AbiProtocol
///    in a correct manner
///  * Has a correct 'get_definition' function, which must return a AbiTraitDefinition instance
///    that is truthful.
///  * Implement 'call' correctly
pub unsafe trait AbiExportable {
    /// A function which implements the savefile-abi contract.
    const ABI_ENTRY: unsafe extern "C" fn(AbiProtocol);
    /// Must return a truthful description about all the methods in the
    /// `dyn trait` that AbiExportable is implemented for (i.e, `Self`).
    fn get_definition(version: u32) -> AbiTraitDefinition;
    /// Must return the current latest version of the interface. I.e,
    /// the version which Self represents. Of course, there may be future higher versions,
    /// but none such are known by the code.
    fn get_latest_version() -> u32;
    /// Implement method calling. Must deserialize data from 'data', and
    /// must return an outcome (result) by calling `receiver`.
    ///
    /// The return value is either Ok, or an error if the method to be called could
    /// not be found or for some reason not called (mismatched actual ABI, for example).
    ///
    /// `receiver` must be given 'abi_result' as its 'result_receiver' parameter, so that
    /// the receiver may set the result. The receiver executes at the caller-side of the ABI-divide,
    /// but it receives as first argument an RawAbiCallResult that has been created by the callee.
    fn call(
        trait_object: TraitObject,
        method_number: u16,
        effective_version: u32,
        compatibility_mask: u64,
        data: &[u8],
        abi_result: *mut (),
        receiver: unsafe extern "C" fn(
            outcome: *const RawAbiCallResult,
            result_receiver: *mut (), /* actual type: Result<T,SaveFileError>>*/
        ),
    ) -> Result<(), SavefileError>;
}
/// Trait that is to be implemented for the implementation of a trait whose `dyn trait` type
/// implements AbiExportable.
///
/// If `MyExampleTrait` is an ABI-exportable trait, and `MyExampleImplementation` is an
/// implementation of `MyExampleTrait`, then:
///  * The `AbiInterface` associated type must be `dyn MyExampleTrait`
///  * `AbiExportableImplementation` must be implemented for `MyExampleImplementation`
///
/// # Safety
/// The following must be fulfilled:
/// * ABI_ENTRY must be a valid function, implementing the AbiProtocol-protocol.
/// * AbiInterface must be 'dyn SomeTrait', where 'SomeTrait' is an exported trait.
///
pub unsafe trait AbiExportableImplementation {
    /// An entry point which implements the AbiProtocol protocol
    const ABI_ENTRY: unsafe extern "C" fn(AbiProtocol);
    /// The type 'dyn SomeTrait'.
    type AbiInterface: ?Sized + AbiExportable;
    /// A method which must be able to return a default-implementation of `dyn SomeTrait`.
    /// I.e, the returned box is a boxed dyn trait, not 'Self' (the actual implementation type).
    fn new() -> Box<Self::AbiInterface>;
}
/// Given a boxed trait object pointer, expressed as a data ptr and a vtable pointer,
/// of type T (which must be a `dyn SomeTrait` type), drop the boxed trait object.
/// I.e, `trait_object` is a type erased instance of Box<T> , where T is for example
/// `dyn MyTrait`.
/// # Safety
/// The given `trait_object` must be a boxed trait object.
unsafe fn destroy_trait_obj<T: AbiExportable + ?Sized>(trait_object: TraitObject) {
    let mut raw_ptr: MaybeUninit<*mut T> = MaybeUninit::uninit();
    ptr::copy(
        &trait_object as *const TraitObject as *const MaybeUninit<*mut T>,
        &mut raw_ptr as *mut MaybeUninit<*mut T>,
        1,
    );
    let _ = Box::from_raw(raw_ptr.assume_init());
}
/// Call the given method, on the trait object.
///
/// trait_object - Type erased version of Box<dyn SomeTrait>
/// method_number - The method to be called. This is an ordinal number, with 0 being the first method in definition order in the trait.
/// effective_version - The version number in the serialized format, negotiated previously.
/// compatibility_mask - For each method, one bit which says if the argument can be sent as just a reference, without having to use serialization to do a deep copy
/// data - All the arguments, in a slice
/// abi_result - Pointer to a place which will receiver the return value. This points to a Result<T, SaveFileError>, but since that type may have a different layout in callee and caller, we can't just use that type.
/// receiver - A function which will receiver the actual serialized return value, and an error code.
///
/// If the callee panics, this will be encoded into the RawAbiCallResult given to the `receiver`. The `reveiver` will always be called with the return value/return status.
///
/// # Safety
/// Every detail of all the arguments must be correct. Any little error is overwhelmingly likely to cause
/// a segfault or worse.
unsafe fn call_trait_obj<T: AbiExportable + ?Sized>(
    trait_object: TraitObject,
    method_number: u16,
    effective_version: u32,
    compatibility_mask: u64,
    data: &[u8],
    abi_result: *mut (),
    receiver: unsafe extern "C" fn(
        outcome: *const RawAbiCallResult,
        result_receiver: *mut (), /*Result<T,SaveFileError>>*/
    ),
) -> Result<(), SavefileError> {
    <T>::call(
        trait_object,
        method_number,
        effective_version,
        compatibility_mask,
        data,
        abi_result,
        receiver,
    )
}
/// Describes a method in a trait
#[derive(Debug)]
pub struct AbiConnectionMethod {
    /// The name of the method
    pub method_name: String,
    /// This is mostly for debugging, it's not actually used
    pub caller_info: AbiMethodInfo,
    /// The ordinal number of this method at the callee, or None if callee doesn't have
    /// method.
    pub callee_method_number: Option<u16>,
    /// For each of the up to 64 different arguments,
    /// a bit value of 1 means layout is identical, and in such a way that
    /// references can be just binary copied (owned arguments must still be cloned, and
    /// we can just as well do that using serialization, it will be approx as fast).
    pub compatibility_mask: u64,
}
/// Type erased carrier of a dyn trait fat pointer
#[repr(C)]
#[derive(Clone, Copy, Debug)]
pub struct TraitObject {
    ptr: *const (),
    vtable: *const (),
}
unsafe impl Sync for TraitObject {}
unsafe impl Send for TraitObject {}
impl TraitObject {
    /// Returns a TraitObject with two null ptrs. This value must never be used,
    /// but can serve as a default before the real value is written.
    pub fn zero() -> TraitObject {
        TraitObject {
            ptr: null(),
            vtable: null(),
        }
    }
    /// Interpret this TraitObject as *mut T.
    /// *mut T *MUST* be a fat pointer of the same type as was used to create this TraitObject
    /// instance.
    pub fn as_mut_ptr<T: ?Sized>(self) -> *mut T {
        assert_eq!(
            std::mem::size_of::<*mut T>(),
            16,
            "TraitObject must only be used with dyn trait, not any other kind of trait"
        );
        let mut target: MaybeUninit<*mut T> = MaybeUninit::zeroed();
        unsafe {
            ptr::copy(
                &self as *const TraitObject as *const MaybeUninit<*mut T>,
                &mut target as *mut MaybeUninit<*mut T>,
                1,
            );
            target.assume_init()
        }
    }
    /// Interpret this TraitObject as *const T.
    /// *const T *MUST* be a fat pointer of the same type as was used to create this TraitObject
    /// instance.
    pub fn as_const_ptr<T: ?Sized>(self) -> *const T {
        assert_eq!(
            std::mem::size_of::<*const T>(),
            16,
            "TraitObject must only be used with dyn trait, not any other kind of trait"
        );
        let mut target: MaybeUninit<*const T> = MaybeUninit::zeroed();
        unsafe {
            ptr::copy(
                &self as *const TraitObject as *const MaybeUninit<*const T>,
                &mut target as *mut MaybeUninit<*const T>,
                1,
            );
            target.assume_init()
        }
    }
    /// Convert the given fat pointer to a TraitObject instance.
    pub fn new_from_ptr<T: ?Sized>(raw: *const T) -> TraitObject {
        assert_eq!(
            std::mem::size_of::<*const T>(),
            16,
            "TraitObject::new_from_ptr() must only be used with dyn trait, not any other kind of trait"
        );
        assert_eq!(std::mem::size_of::<TraitObject>(), 16);
        let mut trait_object = TraitObject::zero();
        unsafe {
            ptr::copy(
                &raw as *const *const T,
                &mut trait_object as *mut TraitObject as *mut *const T,
                1,
            )
        };
        trait_object
    }
    /// Note: This only works for boxed dyn Trait.
    /// T must be `dyn SomeTrait`.
    pub fn new<T: ?Sized>(input: Box<T>) -> TraitObject {
        let raw = Box::into_raw(input);
        assert_eq!(
            std::mem::size_of::<*mut T>(),
            16,
            "TraitObject::new() must only be used with Boxed dyn trait, not any other kind of Box"
        );
        assert_eq!(std::mem::size_of::<TraitObject>(), 16);
        let mut trait_object = TraitObject::zero();
        unsafe {
            ptr::copy(
                &raw as *const *mut T,
                &mut trait_object as *mut TraitObject as *mut *mut T,
                1,
            )
        };
        trait_object
    }
}
/// Information about an entry point and the trait
/// it corresponds to.
#[derive(Debug, Clone)]
#[repr(C)]
pub struct AbiConnectionTemplate {
    /// The negotiated effective serialization version.
    /// See 'savefile' crate for more information about version handling.
    #[doc(hidden)]
    pub effective_version: u32,
    /// All the methods of the trait.
    #[doc(hidden)]
    pub methods: &'static [AbiConnectionMethod],
    /// The entry point which will actually be used for calls. Typically,
    /// this entry point points into a different shared object/dll compared to
    /// the caller.
    #[doc(hidden)]
    pub entry: unsafe extern "C" fn(flag: AbiProtocol),
}
/// Information about an ABI-connection. I.e,
/// a caller and callee. The caller is in one
/// particular shared object, the callee in another.
/// Any modifiable state is stored in this object,
/// and the actual callee is stateless (allowing multiple
/// different incoming 'connections').
///
/// The fields are public, so that they can be easily written by the
/// proc macros. But the user should never interact with them directly,
/// so they are marked as doc(hidden).
#[repr(C)]
#[derive(Debug)]
pub struct AbiConnection<T: ?Sized> {
    /// Cachable information about the interface
    #[doc(hidden)]
    pub template: AbiConnectionTemplate,
    /// Information on whether we *own* the trait object.
    /// If we do, we must arrange for the foreign library code to drop it when we're done.
    /// Otherwise, we must not drop it.
    #[doc(hidden)]
    pub owning: Owning,
    /// The concrete trait object for this instance.
    /// I.e, type erased trait object in the foreign library
    #[doc(hidden)]
    pub trait_object: TraitObject,
    /// Phantom, to make this valid rust (since we don't otherwise carry a T).
    #[doc(hidden)]
    pub phantom: PhantomData<*const T>,
}
unsafe impl<T: ?Sized> Sync for AbiConnection<T> {}
unsafe impl<T: ?Sized> Send for AbiConnection<T> {}
/// A trait object together with its entry point
#[repr(C)]
#[derive(Debug)]
pub struct PackagedTraitObject {
    /// Type erased trait object for an ABI-exported trait
    pub trait_object: TraitObject,
    /// The low level entry point
    pub entry: unsafe extern "C" fn(flag: AbiProtocol),
}
impl PackagedTraitObject {
    /// Create a PackagedTraitObject from a `Box<T>`    . T must be a trait object.
    /// T must implement AbiExportable, which means it has an ::ABI_ENTRY associated
    /// type that gives the entry point.
    pub fn new<T: AbiExportable + ?Sized>(boxed: Box<T>) -> PackagedTraitObject {
        let trait_object = TraitObject::new(boxed);
        let entry = T::ABI_ENTRY;
        PackagedTraitObject { trait_object, entry }
    }
    /// Create a PackagedTraitObject from a &T. T must be a trait object.
    /// T must implement AbiExportable, which means it has an ::ABI_ENTRY associated
    /// type that gives the entry point.
    /// Note, we use `*const T` here even for mutable cases, but it doesn't matter
    /// since it's never used, it's just cast to other stuff and then finally
    /// back to the right type.
    pub fn new_from_ptr<T>(r: *const T) -> PackagedTraitObject
    where
        T: AbiExportable + ?Sized,
    {
        assert_eq!(std::mem::size_of::<*const T>(), 16);
        let trait_object = TraitObject::new_from_ptr(r);
        let entry = T::ABI_ENTRY;
        PackagedTraitObject { trait_object, entry }
    }
    /// 'Serialize' this object. I.e, write it to a binary buffer, so that we can send it
    /// to a foreign library.
    pub fn serialize(self, serializer: &mut Serializer<impl Write>) -> Result<(), SavefileError> {
        serializer.write_ptr(self.trait_object.ptr)?;
        serializer.write_ptr(self.trait_object.vtable)?;
        serializer.write_ptr(self.entry as *const ())?;
        Ok(())
    }
    /// 'Deserialize' this object. I.e, read it from a binary buffer, so that we can receive it
    /// from a foreign library.
    ///
    /// # Safety
    /// The data available to read from Deserializer must be correct, and contain
    /// a valid serialized PackagedTraitObject.
    pub unsafe fn deserialize(
        deserializer: &mut Deserializer<impl Read>,
    ) -> Result<PackagedTraitObject, SavefileError> {
        let mut trait_object = TraitObject::zero();
        trait_object.ptr = deserializer.read_ptr()? as *mut ();
        trait_object.vtable = deserializer.read_ptr()? as *mut ();
        let entry = deserializer.read_ptr()? as *mut ();
        assert_eq!(std::mem::size_of::<unsafe extern "C" fn(flag: AbiProtocol)>(), 8);
        Ok(PackagedTraitObject {
            trait_object,
            entry: unsafe { std::mem::transmute(entry) },
        })
    }
}
impl<T: ?Sized> Drop for AbiConnection<T> {
    fn drop(&mut self) {
        match &self.owning {
            Owning::Owned => unsafe {
                (self.template.entry)(AbiProtocol::DropInstance {
                    trait_object: self.trait_object,
                });
            },
            Owning::NotOwned => {}
        }
    }
}
/// Helper struct carrying a pointer and length to an utf8 message.
/// We use this instead of &str, to guard against the hypothetical possibility
/// that the layout of &str would ever change.
#[repr(C)]
pub struct AbiErrorMsg {
    /// Pointer to utf8 error message
    pub error_msg_utf8: *const u8,
    /// The length of the message, in bytes
    pub len: usize,
}
impl AbiErrorMsg {
    /// Attempt to convert the given data to a String.
    /// Any invalid UTF8-chars are replaced.
    pub fn convert_to_string(&self) -> String {
        if self.len == 0 {
            return "".to_string();
        }
        let data = unsafe { slice::from_raw_parts(self.error_msg_utf8, self.len) };
        String::from_utf8_lossy(data).into()
    }
}
/// The result of calling a method in a foreign library.
#[repr(C, u8)]
pub enum RawAbiCallResult {
    /// Successful operation
    Success {
        /// A pointer to the return value, serialized
        data: *const u8,
        /// The size of the serialized return value, in bytes
        len: usize,
    },
    /// The method that was called, panicked. Since the way panic unwinding in Rust
    /// could change between rust-versions, we can't allow any panics to unwind
    /// across the boundary between two different libraries.
    Panic(AbiErrorMsg),
    /// There was an error in the ABI-framework. This will happen if code tries
    /// to call a method that is not actually available on the target, or if method
    /// signatures change in non ABI-compatible ways.
    AbiError(AbiErrorMsg),
}
/// This struct carries all information between different libraries.
/// I.e, it is the sole carrier of information accross an FFI-boundary.
#[repr(C, u8)]
pub enum AbiProtocol {
    /// Call a method on a trait object.
    RegularCall {
        /// Type-erased actual trait object. This is the 16 bytes o trait fat pointer.
        trait_object: TraitObject,
        /// For every argument, a bit '1' if said argument is a reference that can just
        /// be binary copied, as a pointer
        compatibility_mask: u64,
        /// Data for parameters, possibly serialized
        data: *const u8,
        /// Length of parameters-data
        data_length: usize,
        /// Instance of type `AbiCallResult<T>`, to which the return-value callback will
        /// write deserialized results or panic-message.
        abi_result: *mut (),
        /// Callback which will be called by callee in order to supply the return value
        /// (without having to allocate heap-memory)
        receiver: unsafe extern "C" fn(
            outcome: *const RawAbiCallResult,
            result_receiver: *mut (), /*Result<T,SaveFileError>>*/
        ),
        /// The negotiated protocol version
        effective_version: u32,
        /// The method to call. This is the method number using the
        /// numbering of the callee.
        method_number: u16,
    },
    /// Get callee version
    InterrogateVersion {
        /// The version of the callee savefile schema. This can only change if the savefile library
        /// is upgraded.
        schema_version_receiver: *mut u16,
        /// The version of the data schema, on the callee.
        abi_version_receiver: *mut u32,
    },
    /// Get schema
    InterrogateMethods {
        /// The version of the schema that the caller expects.
        schema_version_required: u16,
        /// The schema version that the caller expects the callee to communicate using.
        /// I.e, if callee has a later version of the 'savefile' library, this can be used
        /// to arrange for it to speak an older dialect. In theory, but savefile is still
        /// involving and there is always a risk that ABI-breaks will be necessary.
        callee_schema_version_interrogated: u32,
        /// A pointer pointing at the location that that caller will expect the return value to be written.
        /// Note, callee does not actually write to this, it just calls `callback`, which allows caller
        /// to write to the result_receiver. The field is still needed here, since the `callback` is a bare function,
        /// and cannot capture any data.
        result_receiver: *mut AbiTraitDefinition,
        /// Called by callee to convey information back to caller.
        /// `receiver` is place the caller will want to write the result.
        callback: unsafe extern "C" fn(
            receiver: *mut AbiTraitDefinition,
            callee_schema_version: u16,
            data: *const u8,
            len: usize,
        ),
    },
    /// Create a new trait object.
    CreateInstance {
        /// Pointer which will receive the fat pointer to the dyn trait object, allocated on heap using Box.
        trait_object_receiver: *mut TraitObject,
        /// Opaque pointer to callers representation of error (String)
        error_receiver: *mut (), /*String*/
        /// Called by callee if instance creation fails (by panic)
        error_callback: unsafe extern "C" fn(error_receiver: *mut (), error: *const AbiErrorMsg),
    },
    /// Drop a trait object.
    DropInstance {
        /// dyn trait fat pointer
        trait_object: TraitObject,
    },
}
/// Parse the given RawAbiCallResult. If it concerns a success, then deserialize a return value using the given closure.
pub fn parse_return_value_impl<T>(
    outcome: &RawAbiCallResult,
    deserialize_action: impl FnOnce(&mut Deserializer<Cursor<&[u8]>>) -> Result<T, SavefileError>,
) -> Result<T, SavefileError> {
    match outcome {
        RawAbiCallResult::Success { data, len } => {
            let data = unsafe { std::slice::from_raw_parts(*data, *len) };
            let mut reader = Cursor::new(data);
            let file_version = reader.read_u32::<LittleEndian>()?;
            let mut deserializer = Deserializer {
                reader: &mut reader,
                file_version,
                ephemeral_state: HashMap::new(),
            };
            deserialize_action(&mut deserializer)
            //T::deserialize(&mut deserializer)
        }
        RawAbiCallResult::Panic(AbiErrorMsg { error_msg_utf8, len }) => {
            let errdata = unsafe { std::slice::from_raw_parts(*error_msg_utf8, *len) };
            Err(SavefileError::CalleePanic {
                msg: String::from_utf8_lossy(errdata).into(),
            })
        }
        RawAbiCallResult::AbiError(AbiErrorMsg { error_msg_utf8, len }) => {
            let errdata = unsafe { std::slice::from_raw_parts(*error_msg_utf8, *len) };
            Err(SavefileError::GeneralError {
                msg: String::from_utf8_lossy(errdata).into(),
            })
        }
    }
}
/// Parse an RawAbiCallResult instance into a `Result<Box<dyn T>, SavefileError>` .
/// This is used on the caller side, and the type T will always be statically known.
/// TODO: There's some duplicated code here, compare parse_return_value
pub fn parse_return_boxed_trait<T:'static>(outcome: &RawAbiCallResult) -> Result<Box<AbiConnection<T>>, SavefileError>
where
    T: AbiExportable + ?Sized,
{
    parse_return_value_impl(outcome, |deserializer| {
        let packaged = unsafe { PackagedTraitObject::deserialize(deserializer)? };
        unsafe {
            Ok(Box::new(AbiConnection::<T>::from_raw_packaged(
                packaged,
                Owning::Owned,
            )?))
        }
    })
}
/// We never unload libraries which have been dynamically loaded, because of all the problems with
/// doing so.
static LIBRARY_CACHE: Mutex<Option<HashMap<String /*filename*/, Library>>> = Mutex::new(None);
static ENTRY_CACHE: Mutex<
    Option<HashMap<(String /*filename*/, String /*trait name*/), unsafe extern "C" fn(flag: AbiProtocol)>>,
> = Mutex::new(None);
static ABI_CONNECTION_TEMPLATES: Mutex<
    Option<HashMap<(TypeId,unsafe extern "C" fn(flag: AbiProtocol)), AbiConnectionTemplate>>,
> = Mutex::new(None);
struct Guard<'a, K: Hash + Eq, V> {
    guard: MutexGuard<'a, Option<HashMap<K, V>>>,
}
impl<K: Hash + Eq, V> std::ops::Deref for Guard<'_, K, V> {
    type Target = HashMap<K, V>;
    fn deref(&self) -> &HashMap<K, V> {
        self.guard.as_ref().unwrap()
    }
}
impl<K: Hash + Eq, V> std::ops::DerefMut for Guard<'_, K, V> {
    fn deref_mut(&mut self) -> &mut HashMap<K, V> {
        &mut *self.guard.as_mut().unwrap()
    }
}
// Avoid taking a dependency on OnceCell or lazy_static or something, just for this little thing
impl<'a, K: Hash + Eq, V> Guard<'a, K, V> {
    pub fn lock(map: &'a Mutex<Option<HashMap<K /*filename*/, V>>>) -> Guard<'a, K, V> {
        let mut guard = map.lock().unwrap();
        if guard.is_none() {
            *guard = Some(HashMap::new());
        }
        Guard { guard }
    }
}
/// Helper to determine if something is owned, or not
#[derive(Debug, Clone, Copy)]
pub enum Owning {
    /// The object is owned
    Owned,
    /// The object is not owned
    NotOwned,
}
const FLEX_BUFFER_SIZE: usize = 64;
/// Stack allocated buffer that overflows on heap if needed
#[doc(hidden)]
pub enum FlexBuffer {
    /// Allocated on stack>
    Stack {
        /// The current write position. This is the same as
        /// the logical size of the buffer, since we can only write at the end.
        position: usize,
        /// The data backing this buffer, on the stack
        data: MaybeUninit<[u8; FLEX_BUFFER_SIZE]>,
    },
    /// Allocated on heap
    Spill(Vec<u8>),
}
impl Write for FlexBuffer {
    fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
        match self {
            FlexBuffer::Stack { position, data } => {
                if *position + buf.len() <= FLEX_BUFFER_SIZE {
                    let rawdata = data as *mut MaybeUninit<_> as *mut u8;
                    unsafe { ptr::copy(buf.as_ptr(), rawdata.add(*position), buf.len()) };
                    *position += buf.len();
                } else {
                    let mut spill = Vec::with_capacity(2 * FLEX_BUFFER_SIZE + buf.len());
                    let rawdata = data as *mut MaybeUninit<_> as *mut u8;
                    let dataslice = unsafe { slice::from_raw_parts(rawdata, *position) };
                    spill.extend(dataslice);
                    spill.extend(buf);
                    *self = FlexBuffer::Spill(spill);
                }
            }
            FlexBuffer::Spill(v) => v.extend(buf),
        }
        Ok(buf.len())
    }
    fn flush(&mut self) -> std::io::Result<()> {
        Ok(())
    }
}
/// Raw entry point for receiving return values from other shared libraries
#[doc(hidden)]
pub unsafe extern "C" fn abi_result_receiver<T: Deserialize>(
    outcome: *const RawAbiCallResult,
    result_receiver: *mut (),
) {
    let outcome = unsafe { &*outcome };
    let result_receiver = unsafe { &mut *(result_receiver as *mut std::mem::MaybeUninit<Result<T, SavefileError>>) };
    result_receiver.write(parse_return_value_impl(outcome, |deserializer| {
        T::deserialize(deserializer)
    }));
}
/// Raw entry point for receiving return values from other shared libraries
#[doc(hidden)]
pub unsafe extern "C" fn abi_boxed_trait_receiver<T:'static>(outcome: *const RawAbiCallResult, result_receiver: *mut ())
where
    T: AbiExportable + ?Sized,
{
    let outcome = unsafe { &*outcome };
    let result_receiver =
        unsafe { &mut *(result_receiver as *mut std::mem::MaybeUninit<Result<Box<AbiConnection<T>>, SavefileError>>) };
    result_receiver.write(parse_return_value_impl(outcome, |deserializer| {
        let packaged = unsafe { PackagedTraitObject::deserialize(deserializer)? };
        unsafe {
            Ok(Box::new(AbiConnection::<T>::from_raw_packaged(
                packaged,
                Owning::Owned,
            )?))
        }
    }));
}
// Flex buffer is only used internally, and we don't need to provide
// any of the regular convenience.
#[allow(clippy::new_without_default)]
#[allow(clippy::len_without_is_empty)]
impl FlexBuffer {
    /// Create a new buffer instance, allocated from the stack
    pub fn new() -> FlexBuffer {
        FlexBuffer::Stack {
            position: 0,
            data: MaybeUninit::uninit(),
        }
    }
    /// Get a pointer to the buffer contents
    pub fn as_ptr(&self) -> *const u8 {
        match self {
            FlexBuffer::Stack { data, .. } => data as *const MaybeUninit<_> as *const u8,
            FlexBuffer::Spill(v) => v.as_ptr(),
        }
    }
    /// Get the number of bytes in the buffer
    pub fn len(&self) -> usize {
        match self {
            FlexBuffer::Stack { position, .. } => *position,
            FlexBuffer::Spill(v) => v.len(),
        }
    }
}
/// Arguments are layout compatible if their native versions are layout_compatible,
/// or if they are traits and the effective version of the traits are compatible.
/// For traits, the actual fat pointer is always compatible, so can always be used.
/// The trait-objects themselves can never be serialized, so they can only be used as references.
fn arg_layout_compatible(
    a_native: &Schema,
    b_native: &Schema,
    a_effective: &Schema,
    b_effective: &Schema,
    effective_version: u32,
) -> bool {
    match (a_native, b_native) {
        (Schema::FnClosure(a1, _a2), Schema::FnClosure(b1, _b2)) => {
            let (Schema::FnClosure(effective_a1, effective_a2), Schema::FnClosure(effective_b1, effective_b2)) =
                (a_effective, b_effective)
            else {
                return false;
            };
            a1 == b1
                && a1 == effective_a1
                && a1 == effective_b1
                && effective_a2
                    .verify_backward_compatible(effective_version, effective_b2)
                    .is_ok()
        }
        (Schema::Boxed(native_a), Schema::Boxed(native_b)) => {
            let (Schema::Boxed(effective_a2), Schema::Boxed(effective_b2)) = (a_effective, b_effective) else {
                return false;
            };
            arg_layout_compatible(
                &**native_a,
                &**native_b,
                &**effective_a2,
                &**effective_b2,
                effective_version,
            )
        }
        (Schema::Trait(s_a, _), Schema::Trait(s_b, _)) => {
            if s_a != s_b {
                return false;
            }
            let (Schema::Trait(e_a2, effective_a2), Schema::Trait(e_b2, effective_b2)) = (a_effective, b_effective)
            else {
                return false;
            };
            if e_a2 != e_b2 {
                return false;
            }
            effective_a2
                .verify_backward_compatible(effective_version, effective_b2)
                .is_ok()
        }
        (a, b) => a.layout_compatible(b),
    }
}
impl<T: AbiExportable + ?Sized + 'static> AbiConnection<T> {
    /// Analyse the difference in definitions between the two sides,
    /// and create an AbiConnection
    #[allow(clippy::too_many_arguments)]
    fn analyze_and_create(
        trait_name: &str,
        remote_entry: unsafe extern "C" fn(flag: AbiProtocol),
        effective_version: u32,
        caller_effective_definition: AbiTraitDefinition,
        callee_effective_definition: AbiTraitDefinition,
        caller_native_definition: AbiTraitDefinition,
        callee_native_definition: AbiTraitDefinition,
    ) -> Result<AbiConnectionTemplate, SavefileError> {
        let mut methods = Vec::with_capacity(caller_native_definition.methods.len());
        if caller_native_definition.methods.len() > 64 {
            panic!("Too many method arguments, max 64 are supported!");
        }
        for caller_native_method in caller_native_definition.methods.into_iter() {
            let Some((callee_native_method_number, callee_native_method)) = callee_native_definition
                .methods
                .iter()
                .enumerate()
                .find(|x| x.1.name == caller_native_method.name)
            else {
                methods.push(AbiConnectionMethod {
                    method_name: caller_native_method.name,
                    caller_info: caller_native_method.info,
                    callee_method_number: None,
                    compatibility_mask: 0,
                });
                continue;
            };
            let Some(callee_effective_method) = callee_effective_definition
                .methods
                .iter()
                .find(|x| x.name == caller_native_method.name)
            else {
                return Err(SavefileError::GeneralError {msg: format!("Internal error - missing method definition {} in signature when calculating serializable version of call (1).", caller_native_method.name)});
            };
            let Some(caller_effective_method) = caller_effective_definition
                .methods
                .iter()
                .find(|x| x.name == caller_native_method.name)
            else {
                return Err(SavefileError::GeneralError {msg: format!("Internal error - missing method definition {} in signature when calculating serializable version of call (2).", caller_native_method.name)});
            };
            if caller_native_method.info.arguments.len() != callee_native_method.info.arguments.len() {
                return Err(SavefileError::GeneralError {msg: format!("Number of arguments for method {} was expected by caller to be {} but was {} in implementation.", caller_native_method.name, caller_native_method.info.arguments.len(), callee_native_method.info.arguments.len())});
            }
            if caller_native_method.info.arguments.len() != caller_effective_method.info.arguments.len() {
                return Err(SavefileError::GeneralError {
                    msg: format!(
                        "Internal error - number of arguments for method {} has differs between {} to {} (1).",
                        caller_native_method.name,
                        caller_native_method.info.arguments.len(),
                        caller_effective_method.info.arguments.len()
                    ),
                });
            }
            if caller_native_method.info.arguments.len() != callee_effective_method.info.arguments.len() {
                return Err(SavefileError::GeneralError {
                    msg: format!(
                        "Internal error - number of arguments for method {} has differs between {} to {} (2).",
                        caller_native_method.name,
                        caller_native_method.info.arguments.len(),
                        callee_effective_method.info.arguments.len()
                    ),
                });
            }
            if caller_native_method.info.arguments.len() > 64 {
                return Err(SavefileError::TooManyArguments);
            }
            let retval_effective_schema_diff = diff_schema(
                &caller_effective_method.info.return_value,
                &callee_effective_method.info.return_value,
                "".to_string(),
            );
            if let Some(diff) = retval_effective_schema_diff {
                return Err(SavefileError::IncompatibleSchema {
                    message: format!(
                        "Incompatible ABI detected. Trait: {}, method: {}, return value error: {}",
                        trait_name, &caller_native_method.name, diff
                    ),
                });
            }
            let mut mask = 0;
            let mut verify_compatibility = |effective1, effective2, native1, native2, index: Option<usize>| {
                let effective_schema_diff = diff_schema(effective1, effective2, "".to_string());
                if let Some(diff) = effective_schema_diff {
                    return Err(SavefileError::IncompatibleSchema {
                        message: if let Some(index) = index {
                            format!(
                                "Incompatible ABI detected. Trait: {}, method: {}, argument: #{}: {}",
                                trait_name, &caller_native_method.name, index, diff
                            )
                        } else {
                            format!(
                                "Incompatible ABI detected. Trait: {}, method: {}, return value differs: {}",
                                trait_name, &caller_native_method.name, diff
                            )
                        },
                    });
                }
                let comp = arg_layout_compatible(native1, native2, effective1, effective2, effective_version);
                if comp {
                    if let Some(index) = index {
                        mask |= 1 << index;
                    }
                }
                Ok(())
            };
            for index in 0..caller_native_method.info.arguments.len() {
                let effective1 = &caller_effective_method.info.arguments[index].schema;
                let effective2 = &callee_effective_method.info.arguments[index].schema;
                let native1 = &caller_native_method.info.arguments[index].schema;
                let native2 = &callee_native_method.info.arguments[index].schema;
                verify_compatibility(effective1, effective2, native1, native2, Some(index))?;
            }
            verify_compatibility(
                &caller_effective_method.info.return_value,
                &callee_effective_method.info.return_value,
                &caller_native_method.info.return_value,
                &callee_native_method.info.return_value,
                None, /*return value*/
            )?;
            methods.push(AbiConnectionMethod {
                method_name: caller_native_method.name,
                caller_info: caller_native_method.info,
                callee_method_number: Some(callee_native_method_number as u16),
                compatibility_mask: mask,
            })
        }
        Ok(AbiConnectionTemplate {
            effective_version,
            methods: Box::leak(methods.into_boxed_slice()),
            entry: remote_entry,
        })
    }
    /// Gets the function pointer for the entry point of the given interface, in the given
    /// shared library.
    fn get_symbol_for(
        shared_library_path: &str,
        trait_name: &str,
    ) -> Result<unsafe extern "C" fn(flag: AbiProtocol), SavefileError> {
        let mut entry_guard = Guard::lock(&ENTRY_CACHE);
        let mut lib_guard = Guard::lock(&LIBRARY_CACHE);
        if let Some(item) = entry_guard.get(&(shared_library_path.to_string(), trait_name.to_string())) {
            return Ok(*item);
        }
        let filename = shared_library_path.to_string();
        let trait_name = trait_name.to_string();
        let library;
        match lib_guard.entry(filename.clone()) {
            Entry::Occupied(item) => {
                library = item.into_mut();
            }
            Entry::Vacant(vacant) => unsafe {
                library = vacant.insert(Library::new(&filename).map_err(|x| SavefileError::LoadLibraryFailed {
                    libname: filename.to_string(),
                    msg: x.to_string(),
                })?);
            },
        }
        match entry_guard.entry((filename.clone(), trait_name.clone())) {
            Entry::Occupied(item) => {
                return Ok(*item.get());
            }
            Entry::Vacant(vacant) => {
                let symbol_name = format!("abi_entry_{}\0", trait_name);
                let symbol: Symbol<unsafe extern "C" fn(flag: AbiProtocol)> = unsafe {
                    library
                        .get(symbol_name.as_bytes())
                        .map_err(|x| SavefileError::LoadSymbolFailed {
                            libname: filename.to_string(),
                            symbol: symbol_name,
                            msg: x.to_string(),
                        })?
                };
                let func: unsafe extern "C" fn(flag: AbiProtocol) =
                    unsafe { std::mem::transmute(symbol.into_raw().into_raw()) };
                vacant.insert(func);
                Ok(func)
            }
        }
    }
    /// Determines the name, without namespace, of the implemented
    /// trait.
    fn trait_name() -> &'static str {
        let n = std::any::type_name::<T>();
        let n = n.split("::").last().unwrap();
        n
    }
    /// Load the shared library given by 'filename', and find a savefile-abi-implementation of
    /// the trait 'T'. Returns an object that implements the
    ///
    /// # Safety
    /// The shared library referenced by 'filename' must be safely implemented,
    /// and must contain an ABI-exported implementation of T, which must be a dyn trait.
    /// However, this kind of guarantee is really needed for all execution of any rust code,
    /// so we don't mark this as unsafe. Symbols are unlikely to match by mistake.
    pub fn load_shared_library(filename: &str) -> Result<AbiConnection<T>, SavefileError> {
        let remote_entry = Self::get_symbol_for(filename, Self::trait_name())?;
        Self::new_internal(remote_entry, None, Owning::Owned)
    }
    /// Creates an AbiConnection from a PackagedTraitObject
    /// This is the way the derive macro crates AbiConnection instances.
    ///
    /// # Safety
    /// * entry_point of `packed` must implement AbiProtocol
    /// * trait_object of `packed` must be a type erased trait object reference
    /// * owning must be correct
    #[doc(hidden)]
    pub unsafe fn from_raw_packaged(
        packed: PackagedTraitObject,
        owning: Owning,
    ) -> Result<AbiConnection<T>, SavefileError> {
        Self::from_raw(packed.entry, packed.trait_object, owning)
    }
    /// Check if the given argument 'arg' in method 'method' is memory compatible such that
    /// it will be sent as a reference, not copied. This will depend on the memory layout
    /// of the code being called into. It will not change during the lifetime of an
    /// AbiConnector, but it may change if the target library is recompiled.
    pub fn get_arg_passable_by_ref(&self, method: &str, arg: usize) -> bool {
        if let Some(found) = self.template.methods.iter().find(|var| var.method_name == method) {
            let abi_method: &AbiConnectionMethod = found;
            if arg >= abi_method.caller_info.arguments.len() {
                panic!(
                    "Method '{}' has only {} arguments, so there is no argument #{}",
                    method,
                    abi_method.caller_info.arguments.len(),
                    arg
                );
            }
            (abi_method.compatibility_mask & (1 << (arg as u64))) != 0
        } else {
            let arg_names: Vec<_> = self.template.methods.iter().map(|x| x.method_name.as_str()).collect();
            panic!(
                "Trait has no method with name '{}'. Available methods: {}",
                method,
                arg_names.join(", ")
            );
        }
    }
    /// This routine is mostly for tests.
    /// It allows using a raw external API entry point directly.
    /// This is mostly useful for internal testing of the savefile-abi-library.
    /// 'miri' does not support loading dynamic libraries. Using this function
    /// from within the same image as the implementation, can be a workaround for this.
    ///
    /// # Safety
    /// * entry_point must implement AbiProtocol
    /// * trait_object must be a type erased trait object reference
    /// * owning must be correct
    #[doc(hidden)]
    pub unsafe fn from_raw(
        entry_point: unsafe extern "C" fn(AbiProtocol),
        trait_object: TraitObject,
        owning: Owning,
    ) -> Result<AbiConnection<T>, SavefileError> {
        Self::new_internal(entry_point, Some(trait_object), owning)
    }
    /// Crate a AbiConnection from an entry point and a boxed trait object.
    /// This is undocumented, since it's basically useless except for tests.
    /// If you have a Box<dyn Example>, you'd want to just use it directly,
    /// not make an AbiConnection wrapping it.
    ///
    /// This method is still useful during testing.
    ///
    /// # Safety
    ///  * The entry point must contain a correct implementation matching the type T.
    ///  * T must be a dyn trait object
    #[doc(hidden)]
    pub fn from_boxed_trait(trait_object: Box<T>) -> Result<AbiConnection<T>, SavefileError> {
        let trait_object = TraitObject::new(trait_object);
        Self::new_internal(T::ABI_ENTRY, Some(trait_object), Owning::Owned)
    }
    /// Crate a AbiConnection from an entry point and a boxed trait object.
    /// This allows using a different interface trait for the backing implementation, for
    /// test cases which want to test version evolution.
    ///
    /// # Safety
    ///  * The entry point must contain a correct implementation matching the type T.
    ///  * T must be a dyn trait object
    #[doc(hidden)]
    pub unsafe fn from_boxed_trait_for_test<O: AbiExportable + ?Sized>(
        entry_point: unsafe extern "C" fn(AbiProtocol),
        trait_object: Box<O>,
    ) -> Result<AbiConnection<T>, SavefileError> {
        let trait_object = TraitObject::new(trait_object);
        Self::new_internal(entry_point, Some(trait_object), Owning::Owned)
    }
    fn new_internal(
        remote_entry: unsafe extern "C" fn(AbiProtocol),
        trait_object: Option<TraitObject>,
        owning: Owning,
    ) -> Result<AbiConnection<T>, SavefileError> {
        let mut templates = Guard::lock(&ABI_CONNECTION_TEMPLATES);
        let typeid = TypeId::of::<T>();
        // In principle, it would be enough to key 'templates' based on 'remote_entry'.
        // However, if we do, and the user ever uses AbiConnection<T> with the _wrong_ entry point,
        // we risk poisoning the cache with erroneous data.
        let template = match templates.entry((typeid,remote_entry)) {
            Entry::Occupied(template) => template.get().clone(),
            Entry::Vacant(vacant) => {
                let own_version = T::get_latest_version();
                let own_native_definition = T::get_definition(own_version);
                let mut callee_abi_version = 0u32;
                let mut callee_schema_version = 0u16;
                unsafe {
                    (remote_entry)(AbiProtocol::InterrogateVersion {
                        schema_version_receiver: &mut callee_schema_version as *mut _,
                        abi_version_receiver: &mut callee_abi_version as *mut _,
                    });
                }
                if callee_schema_version > CURRENT_SAVEFILE_LIB_VERSION {
                    return Err(SavefileError::IncompatibleSavefileLibraryVersion);
                }
                let effective_version = own_version.min(callee_abi_version);
                let mut callee_abi_native_definition = AbiTraitDefinition {
                    name: "".to_string(),
                    methods: vec![],
                };
                let mut callee_abi_effective_definition = AbiTraitDefinition {
                    name: "".to_string(),
                    methods: vec![],
                };
                unsafe extern "C" fn definition_receiver(
                    receiver: *mut AbiTraitDefinition,
                    schema_version: u16,
                    data: *const u8,
                    len: usize,
                ) {
                    let receiver = unsafe { &mut *receiver };
                    let slice = unsafe { slice::from_raw_parts(data, len) };
                    let mut cursor = Cursor::new(slice);
                    let schema = load_noschema(&mut cursor, schema_version.into());
                    *receiver = schema.unwrap_or(Default::default());
                }
                unsafe {
                    (remote_entry)(AbiProtocol::InterrogateMethods {
                        schema_version_required: callee_schema_version,
                        callee_schema_version_interrogated: callee_abi_version,
                        result_receiver: &mut callee_abi_native_definition as *mut _,
                        callback: definition_receiver,
                    });
                }
                unsafe {
                    (remote_entry)(AbiProtocol::InterrogateMethods {
                        schema_version_required: callee_schema_version,
                        callee_schema_version_interrogated: effective_version,
                        result_receiver: &mut callee_abi_effective_definition as *mut _,
                        callback: definition_receiver,
                    });
                }
                let own_effective_definition = T::get_definition(effective_version);
                let trait_name = Self::trait_name();
                let template = Self::analyze_and_create(
                    trait_name,
                    remote_entry,
                    effective_version,
                    own_effective_definition,
                    callee_abi_effective_definition,
                    own_native_definition,
                    callee_abi_native_definition,
                )?;
                vacant.insert(template).clone()
            }
        };
        let trait_object = if let Some(obj) = trait_object {
            obj
        } else {
            let mut trait_object = TraitObject::zero();
            let mut error_msg: String = Default::default();
            unsafe extern "C" fn error_callback(error_receiver: *mut (), error: *const AbiErrorMsg) {
                let error_msg = unsafe { &mut *(error_receiver as *mut String) };
                *error_msg = unsafe { &*error }.convert_to_string();
            }
            unsafe {
                (remote_entry)(AbiProtocol::CreateInstance {
                    trait_object_receiver: &mut trait_object as *mut _,
                    error_receiver: &mut error_msg as *mut String as *mut _,
                    error_callback,
                });
            }
            if error_msg.len() > 0 {
                return Err(SavefileError::CalleePanic { msg: error_msg });
            }
            trait_object
        };
        Ok(AbiConnection {
            template,
            owning,
            trait_object,
            phantom: PhantomData,
        })
    }
}
/// Helper implementation of ABI entry point.
/// The actual low level `extern "C"` functions call into this.
/// This is an entry point meant to be used by the derive macro.
///
/// This version, the 'light version', does not support instance
/// creation.
///
/// # Safety
/// The 'AbiProtocol' protocol must only contain valid data.
pub unsafe fn abi_entry_light<T: AbiExportable + ?Sized>(flag: AbiProtocol) {
    match flag {
        AbiProtocol::RegularCall {
            trait_object,
            method_number,
            effective_version,
            compatibility_mask,
            data,
            data_length,
            abi_result,
            receiver,
        } => {
            let result = catch_unwind(|| {
                let data = unsafe { slice::from_raw_parts(data, data_length) };
                match unsafe {
                    call_trait_obj::<T>(
                        trait_object,
                        method_number,
                        effective_version,
                        compatibility_mask,
                        data,
                        abi_result,
                        receiver,
                    )
                } {
                    Ok(_) => {}
                    Err(err) => {
                        let msg = format!("{:?}", err);
                        let err = RawAbiCallResult::AbiError(AbiErrorMsg {
                            error_msg_utf8: msg.as_ptr(),
                            len: msg.len(),
                        });
                        receiver(&err, abi_result)
                    }
                }
            });
            match result {
                Ok(()) => {}
                Err(err) => {
                    let msg: &str;
                    let temp;
                    if let Some(err) = err.downcast_ref::<&str>() {
                        msg = err;
                    } else {
                        temp = format!("{:?}", err);
                        msg = &temp;
                    }
                    let err = RawAbiCallResult::Panic(AbiErrorMsg {
                        error_msg_utf8: msg.as_ptr(),
                        len: msg.len(),
                    });
                    receiver(&err, abi_result)
                }
            }
        }
        AbiProtocol::InterrogateVersion {
            schema_version_receiver,
            abi_version_receiver,
        } => {
            // # SAFETY
            // The pointers come from another savefile-implementation, and are known to be valid
            unsafe {
                *schema_version_receiver = CURRENT_SAVEFILE_LIB_VERSION;
                *abi_version_receiver = <T as AbiExportable>::get_latest_version();
            }
        }
        AbiProtocol::InterrogateMethods {
            schema_version_required,
            callee_schema_version_interrogated,
            result_receiver,
            callback,
        } => {
            // Note! Any conforming implementation must send a 'schema_version_required' number that is
            // within the ability of the receiving implementation. It can interrogate this using 'AbiProtocol::InterrogateVersion'.
            let abi = <T as AbiExportable>::get_definition(callee_schema_version_interrogated);
            let mut temp = vec![];
            let Ok(_) = Serializer::save_noschema(&mut temp, schema_version_required as u32, &abi) else {
                return;
            };
            callback(result_receiver, schema_version_required, temp.as_ptr(), temp.len());
        }
        AbiProtocol::CreateInstance {
            trait_object_receiver: _,
            error_receiver,
            error_callback,
        } => {
            let msg = format!("Internal error - attempt to create an instance of {} using the interface crate, not an implementation crate", std::any::type_name::<T>());
            let err = AbiErrorMsg {
                error_msg_utf8: msg.as_ptr(),
                len: msg.len(),
            };
            error_callback(error_receiver, &err as *const _)
        }
        AbiProtocol::DropInstance { trait_object } => unsafe {
            destroy_trait_obj::<T>(trait_object);
        },
    }
}
/// Helper implementation of ABI entry point.
/// The actual low level `extern "C"` functions call into this.
/// This is an entry point meant to be used by the derive macro.
///
/// This version, the 'full version', does support instance
/// creation.
///
/// # Safety
/// The 'AbiProtocol' protocol must only contain valid data.
pub unsafe fn abi_entry<T: AbiExportableImplementation>(flag: AbiProtocol) {
    match flag {
        AbiProtocol::CreateInstance {
            trait_object_receiver,
            error_receiver,
            error_callback,
        } => {
            let result = catch_unwind(|| {
                let obj: Box<T::AbiInterface> = T::new();
                let raw = Box::into_raw(obj);
                assert_eq!(std::mem::size_of::<*mut T::AbiInterface>(), 16);
                assert_eq!(std::mem::size_of::<TraitObject>(), 16);
                let mut trait_object = TraitObject::zero();
                unsafe {
                    ptr::copy(
                        &raw as *const *mut T::AbiInterface,
                        &mut trait_object as *mut TraitObject as *mut *mut T::AbiInterface,
                        1,
                    )
                };
                unsafe {
                    *trait_object_receiver = trait_object;
                }
            });
            match result {
                Ok(_) => {}
                Err(err) => {
                    let msg: &str;
                    let temp;
                    if let Some(err) = err.downcast_ref::<&str>() {
                        msg = err;
                    } else {
                        temp = format!("{:?}", err);
                        msg = &temp;
                    }
                    let err = AbiErrorMsg {
                        error_msg_utf8: msg.as_ptr(),
                        len: msg.len(),
                    };
                    error_callback(error_receiver, &err as *const _)
                }
            }
        }
        flag => {
            abi_entry_light::<T::AbiInterface>(flag);
        }
    }
}
/// If files representing the given AbiExportable definition is not already present,
/// create one file per supported version, with the definition of the ABI.
/// If files are present, verify that the definition is the same as that in the files.
///
/// This allows us to detect if the data structure as we've declared it is modified
/// in a non-backward compatible way.
///
/// 'path' is a path where files defining the Abi schema are stored. These files
/// should be checked in to version control.
pub fn verify_compatiblity<T: AbiExportable + ?Sized>(path: &str) -> Result<(), SavefileError> {
    std::fs::create_dir_all(path)?;
    for version in 0..=T::get_latest_version() {
        let def = T::get_definition(version);
        let schema_file_name = Path::join(Path::new(path), format!("savefile_{}_{}.schema", def.name, version));
        if std::fs::metadata(&schema_file_name).is_ok() {
            let previous_schema = load_file_noschema(&schema_file_name, 1)?;
            def.verify_backward_compatible(version, &previous_schema)?;
        } else {
            save_file_noschema(&schema_file_name, 1, &def)?;
        }
    }
    Ok(())
}