1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
use glam::{IVec2, UVec2, Vec2};
use itertools::Itertools;
use crate::{point::Point2d, GridPoint, Pivot, Size2d};
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct WorldGrid {
pub world_space: WorldSpace,
pub pixels_per_tile: UVec2,
pub tile_count: UVec2,
}
impl WorldGrid {
pub fn unit_grid(tile_count: impl Size2d, pixels_per_tile: impl Size2d) -> Self {
Self {
world_space: WorldSpace::Units,
pixels_per_tile: pixels_per_tile.as_uvec2(),
tile_count: tile_count.as_uvec2(),
}
}
pub fn pixel_grid(tile_count: impl Size2d, pixels_per_tile: impl Size2d) -> Self {
Self {
world_space: WorldSpace::Pixels,
pixels_per_tile: pixels_per_tile.as_uvec2(),
tile_count: tile_count.as_uvec2(),
}
}
pub fn tile_size_world(&self) -> Vec2 {
let [x, y] = self.pixels_per_tile.as_vec2().to_array();
match self.world_space {
WorldSpace::Units => Vec2::new(x / y, 1.0),
WorldSpace::Pixels => Vec2::new(x, y),
}
}
#[inline]
pub fn pos_to_index(&self, pos: impl Point2d) -> IVec2 {
let pos = pos.as_vec2();
let pos = pos / self.tile_size_world();
(pos + self.center_offset()).floor().as_ivec2()
}
#[inline]
pub fn get_pos_to_index(&self, pos: impl Point2d) -> Option<IVec2> {
let i = self.pos_to_index(pos);
match self.index_in_bounds(i) {
true => Some(i),
false => None,
}
}
#[inline]
pub fn index_to_pos(&self, pos: impl GridPoint) -> Vec2 {
match self.world_space {
WorldSpace::Units => pos.as_vec2() - self.center_offset(),
WorldSpace::Pixels => {
let offset = self.center_offset() * self.pixels_per_tile.as_vec2();
let pos = pos.as_vec2() * self.pixels_per_tile.as_vec2();
pos - offset
}
}
}
pub fn world_size(&self) -> Vec2 {
self.tile_count.as_vec2() * self.tile_size_world()
}
pub fn pos_to_tile_pos(&self, pos: impl Point2d) -> Vec2 {
pos.as_vec2() + self.center_offset()
}
#[inline]
pub fn index_to_tile_center(&self, index: impl GridPoint) -> Vec2 {
let pos = index.as_vec2() + self.center_offset();
pos * self.tile_size_world()
}
#[inline]
pub fn pivot_pos(&self, pivot: Pivot) -> Vec2 {
let pivot = Vec2::from(pivot) - Vec2::splat(0.5);
self.tile_count.as_vec2() * pivot
}
#[inline]
pub fn pivot_pos_world(&self, pivot: Pivot) -> Vec2 {
self.pivot_pos(pivot) * self.tile_size_world()
}
#[inline]
pub fn index_in_bounds(&self, index: impl GridPoint) -> bool {
let size = self.tile_count.as_ivec2();
let i = index.as_ivec2() + size / 2;
i.cmpge(IVec2::ZERO).all() && i.cmplt(size).all()
}
#[inline]
pub fn pos_in_bounds(&self, pos: impl Point2d) -> bool {
self.index_in_bounds(self.pos_to_index(pos))
}
pub fn tile_pos_iter(&self) -> impl Iterator<Item = Vec2> {
let start = self.pivot_pos(Pivot::BottomLeft);
let tile_size = self.tile_size_world();
(0..self.tile_count.y)
.cartesian_product(0..self.tile_count.x)
.map(move |(y, x)| {
let xy = Vec2::new(x as f32, y as f32);
(start + xy) * tile_size
})
}
pub fn tile_center_iter(&self) -> impl Iterator<Item = Vec2> {
let start = self.pivot_pos(Pivot::BottomLeft) + 0.5;
let tile_size = self.tile_size_world();
(0..self.tile_count.y)
.cartesian_product(0..self.tile_count.x)
.map(move |(y, x)| {
let xy = Vec2::new(x as f32, y as f32);
(start + xy) * tile_size
})
}
#[inline]
fn center_offset(&self) -> Vec2 {
let axis_even = (self.tile_count % 2).cmpeq(UVec2::ZERO);
Vec2::select(axis_even, Vec2::ZERO, Vec2::splat(0.5))
}
}
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
pub enum WorldSpace {
Units,
Pixels,
}
impl WorldSpace {
pub fn other(&self) -> Self {
match self {
WorldSpace::Units => WorldSpace::Pixels,
WorldSpace::Pixels => WorldSpace::Units,
}
}
}
#[cfg(test)]
mod tests {
use crate::Pivot;
use super::WorldGrid;
#[test]
fn pixel_iter() {
let grid = WorldGrid::pixel_grid([3, 3], [8, 8]);
let mut iter = grid.tile_pos_iter();
assert_eq!([-12.0, -12.0], iter.next().unwrap().to_array());
assert_eq!([4.0, 4.0], iter.last().unwrap().to_array());
let mut iter = grid.tile_center_iter();
assert_eq!([-8.0, -8.0], iter.next().unwrap().to_array());
assert_eq!([8.0, 8.0], iter.last().unwrap().to_array());
}
#[test]
fn bounds() {
let grid = WorldGrid::unit_grid([3, 3], [8, 8]);
assert_eq!(true, grid.pos_in_bounds([-1.5, 0.0]));
assert_eq!(false, grid.pos_in_bounds([-1.6, 0.0]));
let grid = WorldGrid::unit_grid([2, 2], [8, 8]);
assert_eq!(true, grid.pos_in_bounds([-1.0, 0.0]));
assert_eq!(false, grid.pos_in_bounds([-1.1, 0.0]));
}
#[test]
fn corners() {
let grid = WorldGrid::unit_grid([4, 4], [8, 8]);
let bl = grid.pivot_pos(Pivot::BottomLeft).to_array();
let tr = grid.pivot_pos(Pivot::TopRight).to_array();
assert_eq!([-2.0, -2.0], bl);
assert_eq!([2.0, 2.0], tr);
let grid = WorldGrid::unit_grid([3, 3], [8, 8]);
let bl = grid.pivot_pos(Pivot::BottomLeft).to_array();
let tr = grid.pivot_pos(Pivot::TopRight).to_array();
assert_eq!([-1.5, -1.5], bl);
assert_eq!([1.5, 1.5], tr);
let grid = WorldGrid::pixel_grid([3, 3], [8, 8]);
let bl = grid.pivot_pos_world(Pivot::BottomLeft).to_array();
let tr = grid.pivot_pos_world(Pivot::TopRight).to_array();
assert_eq!([-12.0, -12.0], bl);
assert_eq!([12.0, 12.0], tr);
let grid = WorldGrid::pixel_grid([4, 4], [8, 8]);
let bl = grid.pivot_pos_world(Pivot::BottomLeft).to_array();
let tr = grid.pivot_pos_world(Pivot::TopRight).to_array();
assert_eq!([-16.0, -16.0], bl);
assert_eq!([16.0, 16.0], tr);
}
#[test]
fn pos_to_tile_pos() {
let grid = WorldGrid::unit_grid([5, 5], [8, 8]);
let p = grid.pos_to_tile_pos([0.0, 0.0]);
assert_eq!([0.5, 0.5], p.to_array());
let grid = WorldGrid::unit_grid([4, 4], [8, 8]);
let p = grid.pos_to_tile_pos([0.0, 0.0]);
assert_eq!([0.0, 0.0], p.to_array());
}
#[test]
fn world_iter_center_odd() {
let grid = WorldGrid::unit_grid([3, 3], [8, 8]);
let points: Vec<_> = grid.tile_center_iter().map(|p| p.to_array()).collect();
assert_eq!([-1.0, -1.0], points[0]);
assert_eq!([0.0, -1.0], points[1]);
assert_eq!([1.0, -1.0], points[2]);
assert_eq!([-1.0, 0.0], points[3]);
assert_eq!([0.0, 0.0], points[4]);
assert_eq!([1.0, 0.0], points[5]);
assert_eq!([-1.0, 1.0], points[6]);
assert_eq!([0.0, 1.0], points[7]);
assert_eq!([1.0, 1.0], points[8]);
}
#[test]
fn world_iter_center_even() {
let grid = WorldGrid::unit_grid([2, 2], [8, 8]);
let points: Vec<_> = grid.tile_center_iter().map(|p| p.to_array()).collect();
assert_eq!([-0.5, -0.5], points[0]);
assert_eq!([0.5, -0.5], points[1]);
assert_eq!([-0.5, 0.5], points[2]);
assert_eq!([0.5, 0.5], points[3]);
}
#[test]
fn rect_tiles() {
let grid = WorldGrid::unit_grid([2, 2], [4, 8]);
let points: Vec<_> = grid.tile_center_iter().map(|p| p.to_array()).collect();
assert_eq!([-0.25, -0.5], points[0]);
assert_eq!([0.25, -0.5], points[1]);
assert_eq!([-0.25, 0.5], points[2]);
assert_eq!([0.25, 0.5], points[3]);
}
}