1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
//! # Lexer module
//!
//! The lexer module is responsible for tokenising input strings. The lexer supports
//! various token types such as identifiers, numbers, strings, and operators. The lexer
//! uses a cursor-based approach to iterate over the input string and extract tokens.
//!
//! The lexer is implemented as a struct called `Lexer`, which provides methods for
//! tokenising input strings into individual tokens. The `Lexer` struct contains an
//! iterator over the characters of the input string, and uses this iterator to extract
//! tokens from the input.
//!
//! The `Lexer` struct provides a method called `next_token`, which advances the lexer to
//! the next token in the input stream and returns the token. This method is essentially a
//! large switch statement, containing branches corresponding to every token type. The
//! `next_token` method skips any whitespace and comments before identifying the next token.
//!
//! The token is represented by a `Token` struct, which contains information about its kind
//! (e.g., identifier, operator, literal) and its span in the input stream.
//!
//! The lexer module is used by the parser to tokenise the input string before parsing it
//! into an abstract syntax tree (AST).
use std::str::Chars;
use shared::span::Span;
use token::{Token, TokenKind};
// Attempt to obtain the current version of the lexer module.
pub const VERSION: Option<&str> = std::option_env!("CARGO_PKG_VERSION");
#[cfg(test)]
mod test;
pub mod token;
/// Lexer for tokenising input strings.
///
/// The `Lexer` provides methods for tokenising input strings into individual tokens.
/// It supports various token types such as identifiers, numbers, strings, and operators.
/// The `Lexer` uses a cursor-based approach to iterate over the input string and extract
/// tokens.
pub struct Lexer<'lexer> {
/// Represents the input for the lexer.
///
/// The `input` field is of type `Chars<'lexer>`, which is an iterator over the
/// characters of a string. Using `Chars` instead of just a raw string allows for
/// iteration over the string one character at a time. Notably, it supports
/// unicode characters and characters of unusual length.
input: Chars<'lexer>,
chr: char,
position: usize,
}
impl<'lexer> Lexer<'lexer> {
/// Creates a new Lexer instance.
///
/// # Arguments
///
/// * `input` - The input string to be tokenised.
pub fn new(input: &'lexer str) -> Self {
let mut lexer = Lexer {
input: input.chars(),
chr: char::from(0),
position: 0,
};
lexer.read_char();
// We set position to 0 here because `read_char()` increments position to 1,
// but we want to start the index at 0 for consistency.
lexer.position = 0;
lexer
}
/// Reads the next character from the input stream and updates the lexer's internal
/// state.
fn read_char(&mut self) {
match self.input.next() {
Some(chr) => {
self.chr = chr;
self.position += 1
}
None => {
// '\0' indicates the end of the file.
// If we are already at the end of the file, there is no need to update the
// character or increment the position.
if self.chr != '\0' {
self.chr = '\0';
self.position += 1
}
}
}
}
/// Returns the next character in the input stream without consuming it.
///
/// # Returns
///
/// The next character in the input stream, or `'\0'` if the end of the stream has
/// been reached.
fn peek_char(&mut self) -> char {
// Clones the iterator to peek ahead without advancing it.
match self.input.clone().next() {
Some(chr) => chr,
None => '\0',
}
}
/// Advances the lexer to the next token in the input stream and returns the token.
///
/// This function is essentially a large switch statement, containing branches
/// corresponding to every token type. This function skips any whitespace and
/// comments before identifying the next token. The token is represented by a
/// `Token` struct, which contains information about its kind (e.g., identifier,
/// operator, literal) and its span in the input stream.
///
/// # Returns
///
/// The next token in the sequence, and will continue to return an Eof token once the
/// end is reached.
pub fn next_token(&mut self) -> Token {
let start_position = self.position;
// Skip over any whitespace, comments, and newlines.
match self.skip_garbage() {
Ok(encountered_newline) => {
// If we encountered a newline character (`\n`), we return a NewLine token.
if encountered_newline {
return Token {
span: Span::new(self.position - 1, self.position),
kind: TokenKind::NewLine,
};
}
}
// The only type of error that can be returned is an unterminated multi-line
// comment, so we can safely unwrap the error and return the corresponding
// token.
Err(_) => {
return Token {
span: Span::new(start_position, self.position),
kind: TokenKind::UnterminatedComment,
};
}
}
let start_position = self.position;
// Determine what type of token we are dealing with.
let token_kind = match self.chr {
// Single character symbols
'+' => TokenKind::Plus,
'-' => TokenKind::Minus,
'*' => TokenKind::Mult,
'/' => TokenKind::Div,
'%' => TokenKind::Mod,
',' => TokenKind::Comma,
';' => TokenKind::Semicolon,
':' => TokenKind::Colon,
'(' => TokenKind::LParen,
')' => TokenKind::RParen,
'{' => TokenKind::LCurly,
'}' => TokenKind::RCurly,
'[' => TokenKind::LBracket,
']' => TokenKind::RBracket,
'\0' => TokenKind::Eof,
'\n' => TokenKind::NewLine,
// Potentially double character symbols
'=' => {
if self.peek_char() == '=' {
self.read_char();
TokenKind::Eq
} else {
TokenKind::Assign
}
}
'!' => {
if self.peek_char() == '=' {
self.read_char();
TokenKind::NotEq
} else {
TokenKind::Illegal(self.chr.to_string())
}
}
'<' => {
if self.peek_char() == '=' {
self.read_char();
TokenKind::LtEq
} else {
TokenKind::Lt
}
}
'>' => {
if self.peek_char() == '=' {
self.read_char();
TokenKind::GtEq
} else {
TokenKind::Gt
}
}
// The following rules return immediately, because the size of the token is not fixed,
// so is handled separately.
// String literals
'"' => {
match self.read_string() {
Ok(string) => {
return Token {
span: Span {
start: start_position,
end: self.position,
},
kind: TokenKind::String(string),
}
}
// An error represents an unterminated string.
Err(_) => {
return Token {
span: Span {
start: start_position,
end: self.position,
},
kind: TokenKind::UnterminatedString,
}
}
};
}
// Else, we a dealing with a keyword, identifier, number of an illegal character.
_ => {
if is_valid_ident_start(self.chr) {
let ident = self.read_identifier();
return Token {
span: Span {
start: start_position,
end: self.position,
},
kind: TokenKind::lookup_ident(&ident),
};
} else if is_digit(self.chr) {
return self.read_number();
} else {
TokenKind::Illegal(self.chr.to_string())
}
}
};
// Since every branch advances the character by at least one, we move the function out
// here to simplify the syntax.
self.read_char();
return Token {
span: Span {
start: start_position,
end: self.position,
},
kind: token_kind,
};
}
/// Reads a string literal (including quotes) from the current position in the input.
///
/// # Returns
///
/// A `String` containing the contents of the string literal or an `Err(())` if the
/// string was not terminated.
fn read_string(&mut self) -> Result<String, ()> {
let mut string = String::new();
// Read opening '"'
self.read_char();
// Read string contents
while !(self.chr == '"') {
if self.chr == '\0' {
return Err(());
}
string.push(self.chr);
self.read_char();
}
// Read closing '"'
self.read_char();
Ok(string)
}
/// Reads an identifier starting from the current character position.
///
/// # Returns
///
/// A `String` representing the identifier extracted from the input.
fn read_identifier(&mut self) -> String {
let mut ident = String::new();
while is_valid_ident_continue(self.chr) {
ident.push(self.chr);
self.read_char();
}
ident
}
/// Reads a number from the current position in the input and constructs a `Token`.
///
/// This function reads a sequence of digits as an integer. If a decimal point is
/// encountered, it continues to read the fractional part, constructing a
/// floating-point number.
///
/// # Returns
///
/// A `Token` representing either an integer or a floating-point number, depending on
/// the input.
fn read_number(&mut self) -> Token {
let mut number = String::new();
self._read_int(&mut number);
// If we encounter a decimal point, we continue to read the fractional part.
if self.chr == '.' {
number.push(self.chr);
self.read_char();
self._read_int(&mut number);
return Token {
span: Span {
start: self.position - number.len(),
end: self.position,
},
kind: TokenKind::Float(number),
};
} else {
return Token {
span: Span {
start: self.position - number.len(),
end: self.position,
},
kind: TokenKind::Int(number),
};
}
}
/// Reads and appends digits to a given string from the current position in the input.
///
/// # Arguments
///
/// * `number` - A mutable reference to a `String` where the digits are appended.
fn _read_int(&mut self, number: &mut String) {
while is_digit(self.chr) {
number.push(self.chr);
self.read_char();
}
}
/// Skips over a single-line comment (`//`) in the current input.
///
/// It reads characters until it reaches the end of the line or the end of the input.
///
/// Assumes that the current character (`self.chr`) is the first slash.
fn skip_comment(&mut self) {
if self.chr == '/' && self.peek_char() == '/' {
// Read the '//'
self.read_char();
self.read_char();
// Read the comment till the end of the line, or the end of the input.
loop {
self.read_char();
if self.chr == '\n' {
self.read_char();
break;
}
if self.chr == '\0' {
break;
}
}
}
}
/// Skips over a multi-line comment (`/* ... */`) in the current input.
///
/// Assumes that the current character (`self.chr`) is the first slash.
///
/// # Returns
///
/// An `Ok(())` if the multi-line comment was successfully skipped, or an
/// `Err(())` error if the comment was not terminated.
fn skip_multi_comment(&mut self) -> Result<(), ()> {
// Consume the opening '/*'
if self.chr == '/' && self.peek_char() == '*' {
self.read_char();
self.read_char();
} else {
return Ok(());
}
// Consume the comment
while !(self.chr == '*' && self.peek_char() == '/') {
self.read_char();
if self.chr == '\0' {
return Err(());
};
}
// Consume the closing '*/'
self.read_char();
self.read_char();
Ok(())
}
/// Skips over any whitespace characters, comments, and newlines in the current input.
///
/// # Returns
///
/// A `Result` containing a `bool` indicating whether a newline character was
/// encountered. If an error occurs, it returns an `Err(())`.
fn skip_garbage(&mut self) -> Result<bool, ()> {
// We store whether we encountered a newline because the lexer does
// count newlines, however it only needs to know if it encountered one,
// not how many it encountered.
//
// Note: The parser does depend on this functionality, so don't remove it. :)
let mut encountered_newline = false;
while matches!(self.chr, ' ' | '\t' | '\n' | '\r' | '/') {
match self.chr {
// Skip whitespace
' ' | '\t' => self.skip_whitespace(),
// Skip newlines
'\n' | '\r' => {
encountered_newline = true;
self.read_char();
}
// Skip comments
'/' => match self.peek_char() {
'/' => self.skip_comment(),
'*' => self.skip_multi_comment()?,
_ => break,
},
// The while statement above ensures that there can be no other pattern, but we need
// to handle it in this match statement to satisfy the compiler.
_ => unreachable!(),
}
}
return Ok(encountered_newline);
}
/// Skips over any whitespace characters in the current input.
fn skip_whitespace(&mut self) {
while matches!(self.chr, ' ' | '\t') {
self.read_char();
}
}
}
/// Serves as a source of truth for the definition of what an identifier can start with.
fn is_valid_ident_start(chr: char) -> bool {
chr.is_ascii_alphabetic() || chr == '_'
}
/// Serves as a source of truth for the definition of what an identifier can continue
/// with.
fn is_valid_ident_continue(chr: char) -> bool {
chr.is_ascii_alphanumeric() || chr == '_' || is_digit(chr)
}
/// Serves as a source of truth for the definition of a 'digit'.
fn is_digit(chr: char) -> bool {
chr.is_ascii_digit()
}