saorsa_core/placement/
mod.rs

1// Copyright (c) 2025 Saorsa Labs Limited
2//
3// This file is part of the Saorsa P2P network.
4//
5// Licensed under the AGPL-3.0 license:
6// <https://www.gnu.org/licenses/agpl-3.0.html>
7
8//! Placement Loop & Storage Orchestration System
9//!
10//! This module implements the core placement system for optimal distribution
11//! of erasure-coded shards across the network, integrating EigenTrust reputation,
12//! churn prediction, capacity constraints, and diversity rules.
13//!
14//! ## Core Concepts
15//!
16//! ### Weighted Selection Algorithm
17//!
18//! The placement system uses Efraimidis-Spirakis weighted sampling with the formula:
19//!
20//! ```text
21//! w_i = (τ_i^α) * (p_i^β) * (c_i^γ) * d_i
22//! ```
23//!
24//! Where:
25//! - `τ_i`: EigenTrust reputation score (0.0-1.0)
26//! - `p_i`: Node performance score (0.0-1.0)
27//! - `c_i`: Available capacity score (0.0-1.0)
28//! - `d_i`: Geographic/network diversity bonus (1.0-2.0)
29//! - `α, β, γ`: Configurable weight exponents
30//!
31//! ### Byzantine Fault Tolerance
32//!
33//! Implements configurable f-out-of-3f+1 Byzantine fault tolerance:
34//! - Tolerates up to f Byzantine (malicious) nodes
35//! - Requires minimum 3f+1 nodes for safety
36//! - Automatically adjusts replication based on network size
37//!
38//! ### Geographic Diversity
39//!
40//! Ensures optimal shard distribution across:
41//! - Geographic regions (7 major regions)
42//! - Autonomous System Numbers (ASNs)
43//! - Network operators and data centers
44//!
45//! ## Usage Examples
46//!
47//! ### Basic Placement
48//!
49//! ```rust,no_run
50//! use saorsa_core::placement::{PlacementEngine, PlacementConfig};
51//! use std::time::Duration;
52//!
53//! # async fn example() -> Result<(), Box<dyn std::error::Error>> {
54//! let config = PlacementConfig {
55//!     replication_factor: (3, 8).into(),
56//!     byzantine_tolerance: 2.into(),
57//!     placement_timeout: Duration::from_secs(30),
58//!     geographic_diversity: true,
59//!     ..Default::default()
60//! };
61//!
62//! let mut engine = PlacementEngine::new(config);
63//!
64//! // Select optimal nodes for shard placement
65//! let decision = engine.select_nodes(
66//!     &available_nodes,
67//!     8, // replication factor
68//!     &trust_system,
69//!     &performance_monitor,
70//!     &node_metadata,
71//! ).await?;
72//!
73//! println!("Selected {} nodes with {:.2}% reliability",
74//!          decision.selected_nodes.len(),
75//!          decision.estimated_reliability * 100.0);
76//! # Ok(())
77//! # }
78//! ```
79//!
80//! ### Advanced Configuration
81//!
82//! ```rust,no_run
83//! use saorsa_core::placement::{
84//!     PlacementConfig, OptimizationWeights, PlacementConstraint
85//! };
86//! use std::time::Duration;
87//!
88//! let config = PlacementConfig {
89//!     weights: OptimizationWeights {
90//!         trust_weight: 0.5,      // High trust emphasis
91//!         performance_weight: 0.25,
92//!         capacity_weight: 0.15,
93//!         diversity_bonus: 0.1,
94//!     },
95//!     constraints: vec![
96//!         PlacementConstraint::MinimumTrustScore(0.7),
97//!         PlacementConstraint::MaximumLatency(Duration::from_millis(500)),
98//!         PlacementConstraint::RequireGeographicDiversity,
99//!     ],
100//!     ..Default::default()
101//! };
102//! ```
103//!
104//! ### Storage Orchestration
105//!
106//! ```rust,no_run
107//! use saorsa_core::placement::PlacementOrchestrator;
108//!
109//! # async fn example() -> Result<(), Box<dyn std::error::Error>> {
110//! let orchestrator = PlacementOrchestrator::new(
111//!     config,
112//!     dht_engine,
113//!     trust_system,
114//!     performance_monitor,
115//!     churn_predictor,
116//! ).await?;
117//!
118//! // Start audit and repair systems
119//! orchestrator.start().await?;
120//!
121//! // Place data with optimal distribution
122//! let decision = orchestrator.place_data(
123//!     data,
124//!     8, // replication factor
125//!     Some(NetworkRegion::Europe),
126//! ).await?;
127//! # Ok(())
128//! # }
129//! ```
130//!
131//! ## Architecture
132//!
133//! The placement system consists of several key components:
134//!
135//! - **PlacementEngine**: Main orchestrator for placement decisions
136//! - **WeightedPlacementStrategy**: Implements the weighted selection algorithm
137//! - **StorageOrchestrator**: Manages shard storage and retrieval
138//! - **AuditSystem**: Continuous monitoring of shard health
139//! - **RepairSystem**: Automatic repair with hysteresis control
140//! - **DiversityEnforcer**: Geographic and network diversity constraints
141//!
142//! ## Performance Characteristics
143//!
144//! - **Selection Speed**: <1 second for 8-node selection from 1000+ candidates
145//! - **Memory Usage**: O(n) where n is candidate node count
146//! - **Audit Frequency**: Every 5 minutes with concurrent limits
147//! - **Repair Latency**: <1 hour detection, immediate repair initiation
148//!
149//! ## Security Features
150//!
151//! - EigenTrust integration for reputation-based selection
152//! - Byzantine fault tolerance with configurable parameters
153//! - Proof-of-work for DHT records (~18 bits difficulty)
154//! - Cryptographic verification of all operations
155//! - Secure random selection with cryptographic entropy
156
157pub mod algorithms;
158pub mod dht_records;
159pub mod errors;
160pub mod orchestrator;
161pub mod traits;
162pub mod types;
163
164// Re-export core types for convenience
165pub use algorithms::{DiversityEnforcer, WeightedPlacementStrategy, WeightedSampler};
166pub use dht_records::{
167    DataPointer, DhtRecord, GroupBeacon, NatType, NodeAd, NodeCapabilities, OsSignature,
168    RegisterPointer,
169};
170pub use errors::{PlacementError, PlacementResult};
171pub use orchestrator::{AuditSystem, PlacementOrchestrator, RepairSystem, StorageOrchestrator};
172pub use traits::{
173    NetworkTopology, NodePerformanceMetrics, PerformanceEstimator, PlacementConstraint,
174    PlacementStrategy, PlacementValidator,
175};
176pub use types::{
177    ByzantineTolerance, GeographicLocation, NetworkRegion, OptimizationWeights, PlacementConfig,
178    PlacementDecision, PlacementMetrics, ReplicationFactor,
179};
180
181use std::collections::HashSet;
182use std::time::Instant;
183
184use crate::adaptive::{NodeId, performance::PerformanceMonitor, trust::EigenTrustEngine};
185
186/// Main placement engine that orchestrates the entire placement process
187#[derive(Debug)]
188pub struct PlacementEngine {
189    config: PlacementConfig,
190    strategy: Box<dyn PlacementStrategy + Send + Sync>,
191}
192
193impl PlacementEngine {
194    /// Create new placement engine with default weighted strategy
195    pub fn new(config: PlacementConfig) -> Self {
196        let strategy = Box::new(algorithms::WeightedPlacementStrategy::new(config.clone()));
197
198        Self { config, strategy }
199    }
200
201    /// Create placement engine with custom strategy
202    pub fn with_strategy(
203        config: PlacementConfig,
204        strategy: Box<dyn PlacementStrategy + Send + Sync>,
205    ) -> Self {
206        Self { config, strategy }
207    }
208
209    /// Select optimal nodes for shard placement
210    pub async fn select_nodes(
211        &mut self,
212        available_nodes: &HashSet<NodeId>,
213        replication_factor: u8,
214        trust_system: &EigenTrustEngine,
215        performance_monitor: &PerformanceMonitor,
216        node_metadata: &std::collections::HashMap<NodeId, (GeographicLocation, u32, NetworkRegion)>,
217    ) -> PlacementResult<PlacementDecision> {
218        let start_time = Instant::now();
219
220        // Validate inputs
221        if available_nodes.is_empty() {
222            return Err(PlacementError::InsufficientNodes {
223                required: replication_factor as usize,
224                available: 0,
225            });
226        }
227
228        if replication_factor < self.config.replication_factor.min_value() {
229            return Err(PlacementError::InvalidReplicationFactor(replication_factor));
230        }
231
232        // Apply placement timeout
233        let timeout_future = async {
234            tokio::time::sleep(self.config.placement_timeout).await;
235            Err(PlacementError::PlacementTimeout)
236        };
237
238        let placement_future = self.strategy.select_nodes(
239            available_nodes,
240            replication_factor,
241            trust_system,
242            performance_monitor,
243            node_metadata,
244        );
245
246        // Race placement against timeout
247        let result = tokio::select! {
248            result = placement_future => result?,
249            timeout_result = timeout_future => timeout_result?,
250        };
251        let mut decision = result;
252
253        // Update timing information
254        decision.selection_time = start_time.elapsed();
255
256        // Validate against configuration constraints
257        self.validate_decision(&decision)?;
258
259        Ok(decision)
260    }
261
262    /// Validate placement decision against configuration constraints
263    fn validate_decision(&self, decision: &PlacementDecision) -> PlacementResult<()> {
264        // Check minimum nodes
265        if decision.selected_nodes.len() < self.config.replication_factor.min_value() as usize {
266            return Err(PlacementError::InsufficientNodes {
267                required: self.config.replication_factor.min_value() as usize,
268                available: decision.selected_nodes.len(),
269            });
270        }
271
272        // Check Byzantine fault tolerance
273        let required_for_byzantine = self.config.byzantine_tolerance.required_nodes();
274        if decision.selected_nodes.len() < required_for_byzantine {
275            return Err(PlacementError::ByzantineToleranceViolation {
276                required: required_for_byzantine,
277                available: decision.selected_nodes.len(),
278            });
279        }
280
281        // Check reliability threshold
282        if decision.estimated_reliability < 0.8 {
283            return Err(PlacementError::ReliabilityTooLow {
284                estimated: decision.estimated_reliability,
285                minimum: 0.8,
286            });
287        }
288
289        Ok(())
290    }
291
292    /// Get current configuration
293    pub fn config(&self) -> &PlacementConfig {
294        &self.config
295    }
296
297    /// Update configuration
298    pub fn update_config(&mut self, config: PlacementConfig) {
299        self.config = config;
300    }
301
302    /// Get strategy name
303    pub fn strategy_name(&self) -> &str {
304        self.strategy.name()
305    }
306}