samply_symbols/shared.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
#[cfg(feature = "partial_read_stats")]
use std::cell::RefCell;
use std::fmt::{Debug, Display};
use std::future::Future;
use std::marker::PhantomData;
use std::ops::{Deref, Range};
use std::str::FromStr;
use std::sync::Arc;
#[cfg(feature = "partial_read_stats")]
use bitvec::{bitvec, prelude::BitVec};
use debugid::DebugId;
use object::read::ReadRef;
use object::FileFlags;
use uuid::Uuid;
use crate::mapped_path::MappedPath;
use crate::symbol_map::SymbolMapTrait;
pub type FileAndPathHelperError = Box<dyn std::error::Error + Send + Sync + 'static>;
pub type FileAndPathHelperResult<T> = std::result::Result<T, FileAndPathHelperError>;
// Define a OptionallySendFuture trait. This exists for the following reasons:
// - The "+ Send" in the return types of the FileAndPathHelper trait methods
// trickles down all the way to the root async functions exposed by this crate.
// - We have two consumers: One that requires Send on the futures returned by those
// root functions, and one that cannot return Send futures from the trait methods.
// The former is hyper/tokio (in profiler-symbol-server), the latter is the wasm/js
// implementation: JsFutures are not Send.
// So we provide a cargo feature to allow the consumer to select whether they want Send or not.
//
// Please tell me that there is a better way.
#[cfg(not(feature = "send_futures"))]
pub trait OptionallySendFuture: Future {}
#[cfg(not(feature = "send_futures"))]
impl<T> OptionallySendFuture for T where T: Future {}
#[cfg(feature = "send_futures")]
pub trait OptionallySendFuture: Future + Send {}
#[cfg(feature = "send_futures")]
impl<T> OptionallySendFuture for T where T: Future + Send {}
#[derive(Debug)]
pub enum CandidatePathInfo<FL: FileLocation> {
SingleFile(FL),
InDyldCache {
dyld_cache_path: FL,
dylib_path: String,
},
}
/// An address that can be looked up in a `SymbolMap`.
///
/// You'll usually want to use `LookupAddress::Relative`, i.e. addresses that
/// are relative to some "image base address". This form works with all types
/// of symbol maps across all platforms.
///
/// When testing, be aware that many binaries are laid out in such a way that
/// all three representations of addresses are the same: The image base address
/// is often zero and the sections are often laid out so that each section's
/// address matches its file offset. So if you misrepresent an address in
/// the wrong form, you might not notice it because it still works until you
/// encounter a more complex binary.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub enum LookupAddress {
/// A relative address is relative to the image base address.
///
/// What this means depends on the format of the binary:
///
/// - On Windows, a "relative address" is the same as a RVA ("relative virtual
/// address") in the PE file.
/// - On macOS, a "relative address" is relative to the start of the `__TEXT`
/// segment.
/// - On Linux / ELF, a "relative address" is relative to the address of the
/// first LOAD command in the program header table. In other words, it's
/// relative to the start of the first segment.
/// - For Jitdump files, the "relative address" space is a conceptual space
/// in which the code from all `JIT_CODE_LOAD` records is laid out
/// sequentially, starting at 0.
/// So the relative address of an instruction inside a `JIT_CODE_LOAD` record
/// is the sum of the `code_size` fields of all previous `JIT_CODE_LOAD`
/// records plus the offset of the instruction within the code of this
/// `JIT_CODE_LOAD` record.
///
/// See [`relative_address_base`] for more information.
Relative(u32),
/// A "stated virtual memory address", i.e. a virtual memory address as
/// written down in the binary. In mach-O and ELF, this is the space that
/// section addresses and symbol addresses are in. It's the type of address
/// you'd pass to the Linux `addr2line` tool.
///
/// This type of lookup address is not supported by symbol maps for PDB
/// files or Breakpad files.
Svma(u64),
/// A raw file offset to the point in the binary file where the bytes of the
/// instruction are stored for which symbols should be looked up.
///
/// On Linux, if you have an "AVMA" (absolute virtual memory address) and
/// the `/proc/<pid>/maps` for the process, this is probably the easiest
/// form of address to compute, because the process maps give you the file offsets.
///
/// However, if you do this, be aware that the file offset often is not
/// the same as an SVMA, so expect wrong results if you end up using it in
/// places where SVMAs are expected - it might work fine with some binaries
/// and then break with others.
///
/// File offsets are not supported by symbol maps for PDB files or Breakpad files.
FileOffset(u64),
}
/// In case the loaded binary contains multiple architectures, this specifies
/// how to resolve the ambiguity. This is only needed on macOS.
#[derive(Debug, Clone)]
pub enum MultiArchDisambiguator {
/// Disambiguate by CPU architecture (exact match).
///
/// This string is a name for what mach-O calls the "CPU type" and "CPU subtype".
/// Examples are `x86_64`, `x86_64h`, `arm64`, `arm64e`.
///
/// These strings are returned by the mach function `macho_arch_name_for_cpu_type`.
Arch(String),
/// Disambiguate by CPU architecture (best match).
///
/// The Vec contains the first choice, followed by acceptable fallback choices.
/// Examples are `["arm64e", "arm64"]` or `["x86_64h", "x86_64"]`.
/// This is used in cases where you have lost information about the architecture
/// you're interested in and just want to hope to get the right one.
///
/// The strings are names for what mach-O calls the "CPU type" and "CPU subtype".
/// Examples are `x86_64`, `x86_64h`, `arm64`, `arm64e`.
///
/// These strings are returned by the mach function `macho_arch_name_for_cpu_type`.
BestMatch(Vec<String>),
/// Disambiguate by CPU architecture and find the best match for the architecture
/// that is currently executing this code. This is a heuristic, and should only
/// be used in cases where you have lost information about the architecture you're
/// interested in.
BestMatchForNative,
/// Disambiguate by `DebugId`.
DebugId(DebugId),
}
/// An enum carrying an identifier for a binary. This is stores the same information
/// as a [`debugid::CodeId`], but without projecting it down to a string.
///
/// All types need to be treated rather differently, see their respective documentation.
#[derive(Debug, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub enum CodeId {
/// The code ID for a Windows PE file. When combined with the binary name,
/// the code ID lets you obtain binaries from symbol servers. It is not useful
/// on its own, it has to be paired with the binary name.
///
/// On Windows, a binary's code ID is distinct from its debug ID (= pdb GUID + age).
/// If you have a binary file, you can get both the code ID and the debug ID
/// from it. If you only have a PDB file, you usually *cannot* get the code ID of
/// the corresponding binary from it.
PeCodeId(PeCodeId),
/// The code ID for a macOS / iOS binary (mach-O). This is just the mach-O UUID.
/// The mach-O UUID is shared between both the binary file and the debug file (dSYM),
/// and it can be used on its own to find dSYMs using Spotlight.
///
/// The debug ID and the code ID contain the same information; the debug ID
/// is literally just the UUID plus a zero at the end.
MachoUuid(Uuid),
/// The code ID for a Linux ELF file. This is the "ELF build ID" (also called "GNU build ID").
/// The build ID is usually 20 bytes, commonly written out as 40 hex chars.
///
/// It can be used to find debug files on the local file system or to download
/// binaries or debug files from a `debuginfod` symbol server. it does not have to be
/// paired with the binary name.
///
/// An ELF binary's code ID is more useful than its debug ID: The debug ID is truncated
/// to 16 bytes (32 hex characters), whereas the code ID is the full ELF build ID.
ElfBuildId(ElfBuildId),
}
impl FromStr for CodeId {
type Err = ();
fn from_str(s: &str) -> Result<Self, Self::Err> {
if s.len() <= 17 {
// 8 bytes timestamp + 1 to 8 bytes of image size
Ok(CodeId::PeCodeId(PeCodeId::from_str(s)?))
} else if s.len() == 32 && is_uppercase_hex(s) {
// mach-O UUID
Ok(CodeId::MachoUuid(Uuid::from_str(s).map_err(|_| ())?))
} else {
// ELF build ID. These are usually 40 hex characters (= 20 bytes).
Ok(CodeId::ElfBuildId(ElfBuildId::from_str(s)?))
}
}
}
fn is_uppercase_hex(s: &str) -> bool {
s.chars()
.all(|c| c.is_ascii_hexdigit() && (c.is_ascii_digit() || c.is_ascii_uppercase()))
}
impl std::fmt::Display for CodeId {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
CodeId::PeCodeId(pe) => std::fmt::Display::fmt(pe, f),
CodeId::MachoUuid(uuid) => f.write_fmt(format_args!("{:X}", uuid.simple())),
CodeId::ElfBuildId(elf) => std::fmt::Display::fmt(elf, f),
}
}
}
/// The code ID for a Windows PE file.
///
/// When combined with the binary name, the `PeCodeId` lets you obtain binaries from
/// symbol servers. It is not useful on its own, it has to be paired with the binary name.
///
/// A Windows binary's `PeCodeId` is distinct from its debug ID (= pdb GUID + age).
/// If you have a binary file, you can get both the `PeCodeId` and the debug ID
/// from it. If you only have a PDB file, you usually *cannot* get the `PeCodeId` of
/// the corresponding binary from it.
#[derive(Debug, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct PeCodeId {
pub timestamp: u32,
pub image_size: u32,
}
impl FromStr for PeCodeId {
type Err = ();
fn from_str(s: &str) -> Result<Self, Self::Err> {
if s.len() < 9 || s.len() > 16 {
return Err(());
}
let timestamp = u32::from_str_radix(&s[..8], 16).map_err(|_| ())?;
let image_size = u32::from_str_radix(&s[8..], 16).map_err(|_| ())?;
Ok(Self {
timestamp,
image_size,
})
}
}
impl std::fmt::Display for PeCodeId {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.write_fmt(format_args!("{:08X}{:x}", self.timestamp, self.image_size))
}
}
/// The build ID for an ELF file (also called "GNU build ID").
///
/// The build ID can be used to find debug files on the local file system or to download
/// binaries or debug files from a `debuginfod` symbol server. it does not have to be
/// paired with the binary name.
#[derive(Debug, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct ElfBuildId(pub Vec<u8>);
impl ElfBuildId {
/// Create a new `ElfBuildId` from a slice of bytes (commonly a sha1 hash
/// generated by the linker, i.e. 20 bytes).
pub fn from_bytes(bytes: &[u8]) -> Self {
Self(bytes.to_owned())
}
}
impl FromStr for ElfBuildId {
type Err = ();
fn from_str(s: &str) -> Result<Self, Self::Err> {
let byte_count = s.len() / 2;
let mut bytes = Vec::with_capacity(byte_count);
for i in 0..byte_count {
let hex_byte = &s[i * 2..i * 2 + 2];
let b = u8::from_str_radix(hex_byte, 16).map_err(|_| ())?;
bytes.push(b);
}
Ok(Self(bytes))
}
}
impl std::fmt::Display for ElfBuildId {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
for byte in &self.0 {
f.write_fmt(format_args!("{byte:02x}"))?;
}
Ok(())
}
}
/// Information about a library ("binary" / "module" / "DSO") which allows finding
/// symbol files for it. The information can be partial.
#[derive(Debug, Clone, Default, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct LibraryInfo {
pub debug_name: Option<String>,
pub debug_id: Option<DebugId>,
pub debug_path: Option<String>,
pub name: Option<String>,
pub code_id: Option<CodeId>,
pub path: Option<String>,
pub arch: Option<String>,
}
impl LibraryInfo {
/// Fill all `None` fields on this object with the corresponding fields from `other`.
///
/// This should only be called if some minimal matching has been established, for
/// example if the `code_id` matches or if the combination pair `debug_name, debug_id`
/// matches.
pub fn absorb(&mut self, other: &LibraryInfo) {
if self.debug_name.is_none() && other.debug_name.is_some() {
self.debug_name.clone_from(&other.debug_name);
}
if self.debug_id.is_none() && other.debug_id.is_some() {
self.debug_id = other.debug_id;
}
if self.debug_path.is_none() && other.debug_path.is_some() {
self.debug_path.clone_from(&other.debug_path);
}
if self.name.is_none() && other.name.is_some() {
self.name.clone_from(&other.name);
}
if self.code_id.is_none() && other.code_id.is_some() {
self.code_id.clone_from(&other.code_id);
}
if self.path.is_none() && other.path.is_some() {
self.path.clone_from(&other.path);
}
if self.arch.is_none() && other.arch.is_some() {
self.arch.clone_from(&other.arch);
}
}
}
/// This is the trait that consumers need to implement so that they can call
/// the main entry points of this crate. This crate contains no direct file
/// access - all access to the file system is via this trait, and its associated
/// trait `FileContents`.
pub trait FileAndPathHelper {
type F: FileContents + 'static;
type FL: FileLocation + 'static;
/// Given a "debug name" and a "breakpad ID", return a list of file paths
/// which may potentially have artifacts containing symbol data for the
/// requested binary (executable or library).
///
/// The symbolication methods will try these paths one by one, calling
/// `load_file` for each until it succeeds and finds a file whose contents
/// match the breakpad ID. Any remaining paths are discarded.
///
/// # Arguments
///
/// - `debug_name`: On Windows, this is the filename of the associated PDB
/// file of the executable / DLL, for example "firefox.pdb" or "xul.pdb". On
/// non-Windows, this is the filename of the binary, for example "firefox"
/// or "XUL" or "libxul.so".
/// - `breakpad_id`: A string of 33 hex digits, serving as a hash of the
/// contents of the binary / library. On Windows, this is 32 digits "signature"
/// plus one digit of "pdbAge". On non-Windows, this is the binary's UUID
/// (ELF id or mach-o UUID) plus a "0" digit at the end (replacing the pdbAge).
///
fn get_candidate_paths_for_debug_file(
&self,
info: &LibraryInfo,
) -> FileAndPathHelperResult<Vec<CandidatePathInfo<Self::FL>>>;
/// TODO
fn get_candidate_paths_for_binary(
&self,
info: &LibraryInfo,
) -> FileAndPathHelperResult<Vec<CandidatePathInfo<Self::FL>>>;
/// TODO
fn get_dyld_shared_cache_paths(
&self,
arch: Option<&str>,
) -> FileAndPathHelperResult<Vec<Self::FL>>;
/// TODO
fn get_candidate_paths_for_gnu_debug_link_dest(
&self,
_original_file_location: &Self::FL,
_debug_link_name: &str,
) -> FileAndPathHelperResult<Vec<Self::FL>> {
Ok(Vec::new())
}
/// TODO
fn get_candidate_paths_for_supplementary_debug_file(
&self,
_original_file_path: &Self::FL,
_supplementary_file_path: &str,
_supplementary_file_build_id: &ElfBuildId,
) -> FileAndPathHelperResult<Vec<Self::FL>> {
Ok(Vec::new())
}
/// This method is the entry point for file access during symbolication.
/// The implementer needs to return an object which implements the `FileContents` trait.
/// This method is asynchronous, but once it returns, the file data needs to be
/// available synchronously because the `FileContents` methods are synchronous.
/// If there is no file at the requested path, an error should be returned (or in any
/// other error case).
fn load_file(
&self,
location: Self::FL,
) -> std::pin::Pin<Box<dyn OptionallySendFuture<Output = FileAndPathHelperResult<Self::F>> + '_>>;
/// Ask the helper to return a SymbolMap if it happens to have one available already.
fn get_symbol_map_for_library(
&self,
_info: &LibraryInfo,
) -> Option<(Self::FL, Arc<dyn SymbolMapTrait + Send + Sync>)> {
None
}
}
/// Provides synchronous access to the raw bytes of a file.
/// This trait needs to be implemented by the consumer of this crate.
pub trait FileContents: Send + Sync {
/// Must return the length, in bytes, of this file.
fn len(&self) -> u64;
/// Whether the file is empty.
fn is_empty(&self) -> bool {
self.len() == 0
}
/// Must return a slice of the file contents, or an error.
/// The slice's lifetime must be valid for the entire lifetime of this
/// `FileContents` object. This restriction may be a bit cumbersome to satisfy;
/// it's a restriction that's inherited from the `object` crate's `ReadRef` trait.
fn read_bytes_at(&self, offset: u64, size: u64) -> FileAndPathHelperResult<&[u8]>;
/// TODO: document
fn read_bytes_at_until(
&self,
range: Range<u64>,
delimiter: u8,
) -> FileAndPathHelperResult<&[u8]>;
/// Append `size` bytes to `buffer`, starting to read at `offset` in the file.
/// If successful, `buffer` must have had its len increased exactly by `size`,
/// otherwise the caller may panic.
fn read_bytes_into(
&self,
buffer: &mut Vec<u8>,
offset: u64,
size: usize,
) -> FileAndPathHelperResult<()>;
}
/// The debug information (function name, file path, line number) for a single frame
/// at the looked-up address.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct FrameDebugInfo {
/// The function name for this frame, if known.
pub function: Option<String>,
/// The [`SourceFilePath`] for this frame, if known.
pub file_path: Option<SourceFilePath>,
/// The line number for this frame, if known.
pub line_number: Option<u32>,
}
/// A trait which abstracts away the token that's passed to the [`FileAndPathHelper::load_file`]
/// trait method.
///
/// This is usually something like a `PathBuf`, but it can also be more complicated. For example,
/// in `wholesym` this is an enum which can refer to a local file or to a file from a symbol
/// server.
pub trait FileLocation: Clone + Display {
/// Called on a Dyld shared cache location to create a location for a subcache.
/// Subcaches are separate files with filenames such as `dyld_shared_cache_arm64e.01`.
///
/// The suffix begins with a period.
fn location_for_dyld_subcache(&self, suffix: &str) -> Option<Self>;
/// Called on the location of a debug file in order to create a location for an
/// external object file, based on an absolute path found in the "object map" of
/// the original file.
fn location_for_external_object_file(&self, object_file: &str) -> Option<Self>;
/// Callod on the location of a PE binary in order to create a location for
/// a corresponding PDB file, based on an absolute PDB path found in the binary.
fn location_for_pdb_from_binary(&self, pdb_path_in_binary: &str) -> Option<Self>;
/// Called on the location of a debug file in order to create a location for
/// a source file. `source_file_path` is the path to the source file as written
/// down in the debug file. This is usually an absolute path.
///
/// Only one case with a relative path has been observed to date: In this case the
/// "debug file" was a synthetic .so file which was generated by `perf inject --jit`
/// based on a JITDUMP file which included relative paths. You could argue
/// that the application which emitted relative paths into the JITDUMP file was
/// creating bad data and should have written out absolute paths. However, the `perf`
/// infrastructure worked fine on this file, because the relative paths happened to
/// be relative to the working directory, and because perf / objdump were resolving
/// those relative paths relative to the current working directory.
fn location_for_source_file(&self, source_file_path: &str) -> Option<Self>;
/// Called on the location of a Breakpad sym file, to get a location for its
/// corresponding symindex file.
fn location_for_breakpad_symindex(&self) -> Option<Self>;
fn location_for_dwo(&self, comp_dir: &str, path: &str) -> Option<Self>;
fn location_for_dwp(&self) -> Option<Self>;
}
/// The path of a source file, as found in the debug info.
///
/// This contains both the raw path and an optional "mapped path". The raw path can
/// refer to a file on this machine or on a different machine (i.e. the original
/// build machine). The mapped path is something like a permalink which potentially
/// allows obtaining the source file from a source server or a public hosted repository.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct SourceFilePath {
/// The raw path to the source file, as written down in the debug file. This is
/// usually an absolute path.
raw_path: String,
/// A variant of the path which may allow obtaining the source code for this file
/// from the web.
mapped_path: Option<MappedPath>,
}
impl SourceFilePath {
/// Create a new `SourceFilePath`.
pub fn new(raw_path: String, mapped_path: Option<MappedPath>) -> Self {
Self {
raw_path,
mapped_path,
}
}
/// Create a `SourceFilePath` from a path in a Breakpad .sym file. Such files can
/// contain the "special path" serialization of a mapped path, but they can
/// also contain absolute paths.
pub fn from_breakpad_path(raw_path: String) -> Self {
let mapped_path = MappedPath::from_special_path_str(&raw_path);
Self {
raw_path,
mapped_path,
}
}
/// A short, display-friendly version of this path.
pub fn display_path(&self) -> String {
match self.mapped_path() {
Some(mapped_path) => mapped_path.display_path(),
None => self.raw_path.clone(),
}
}
/// The raw path to the source file, as written down in the debug file. This is
/// usually an absolute path.
///
/// Examples:
///
/// - `"/Users/mstange/code/samply/samply-symbols/src/shared.rs"`
/// - `"/Users/mstange/code/mozilla/widget/cocoa/nsNativeThemeCocoa.mm"`
/// - `"./csu/../csu/libc-start.c"`
/// - `"/rustc/69f9c33d71c871fc16ac445211281c6e7a340943/library/core/src/ptr/const_ptr.rs"`
/// - `r#"D:\agent\_work\2\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl"#`
///
/// If the debug file was produced by compiling code on this machine, then the path
/// usually refers to a file on this machine. (An exception to this is debug info
/// from the Rust stdlib, which has fake `/rustc/<rev>/...` paths even if the when
/// compiling Rust code locally.)
///
/// If the code was compiled on a different machine, then the raw path does not refer
/// to a file on this machine.
///
/// Sometimes this path is a relative path. One such case was observed when the
/// "debug file" was a synthetic .so file which was generated by `perf inject --jit`
/// based on a JITDUMP file which included relative paths. You could argue
/// that the application which emitted relative paths into the JITDUMP file was
/// creating bad data and should have written out absolute paths. However, the `perf`
/// infrastructure worked fine on this file, because the relative paths happened to
/// be relative to the working directory, and because perf / objdump were resolving
/// those relative paths relative to the current working directory.
pub fn raw_path(&self) -> &str {
&self.raw_path
}
/// Returns the raw path while consuming this `SourceFilePath`.
pub fn into_raw_path(self) -> String {
self.raw_path
}
/// A variant of the path which may allow obtaining the source code for this file
/// from the web.
///
/// Examples:
///
/// - If the source file is from a Rust dependency from crates.io, we detect the
/// cargo cache directory in the raw path and create a mapped path of the form [`MappedPath::Cargo`].
/// - If the source file can be obtained from a github URL, and we know this either
/// from the `srcsrv` stream of a PDB file or because we recognize a path of the
/// form `/rustc/<rust-revision>/`, then we create a mapped path of the form [`MappedPath::Git`].
pub fn mapped_path(&self) -> Option<&MappedPath> {
self.mapped_path.as_ref()
}
/// Returns the mapped path while consuming this `SourceFilePath`.
pub fn into_mapped_path(self) -> Option<MappedPath> {
self.mapped_path
}
}
/// The "relative address base" is the base address which [`LookupAddress::Relative`]
/// addresses are relative to. You start with an SVMA (a stated virtual memory address),
/// you subtract the relative address base, and out comes a relative address.
///
/// This function computes that base address. It is defined as follows:
///
/// - For Windows binaries, the base address is the "image base address".
/// - For mach-O binaries, the base address is the vmaddr of the __TEXT segment.
/// - For ELF binaries, the base address is the vmaddr of the *first* segment,
/// i.e. the vmaddr of the first "LOAD" ELF command.
///
/// In many cases, this base address is simply zero:
///
/// - ELF images of dynamic libraries (i.e. not executables) usually have a
/// base address of zero.
/// - Stand-alone mach-O dylibs usually have a base address of zero because their
/// __TEXT segment is at address zero.
/// - In PDBs, "RVAs" are relative addresses which are already relative to the
/// image base.
///
/// However, in the following cases, the base address is usually non-zero:
///
/// - The "image base address" of Windows binaries is usually non-zero.
/// - mach-O executable files (not dylibs) usually have their __TEXT segment at
/// address 0x100000000.
/// - mach-O libraries in the dyld shared cache have a __TEXT segment at some
/// non-zero address in the cache.
/// - ELF executables can have non-zero base addresses, e.g. 0x200000 or 0x400000.
/// - Kernel ELF binaries ("vmlinux") have a large base address such as
/// 0xffffffff81000000. Moreover, the base address seems to coincide with the
/// vmaddr of the .text section, which is readily-available in perf.data files
/// (in a synthetic mapping called "[kernel.kallsyms]_text").
pub fn relative_address_base<'data>(object_file: &impl object::Object<'data>) -> u64 {
use object::read::ObjectSegment;
if let Some(text_segment) = object_file
.segments()
.find(|s| s.name() == Ok(Some("__TEXT")))
{
// This is a mach-O image. "Relative addresses" are relative to the
// vmaddr of the __TEXT segment.
return text_segment.address();
}
if let FileFlags::Elf { .. } = object_file.flags() {
// This is an ELF image. "Relative addresses" are relative to the
// vmaddr of the first segment (the first LOAD command).
if let Some(first_segment) = object_file.segments().next() {
return first_segment.address();
}
}
// For PE binaries, relative_address_base() returns the image base address.
object_file.relative_address_base()
}
/// The symbol for a function.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct SymbolInfo {
/// The function's address. This is a relative address.
pub address: u32,
/// The function size, in bytes. May have been approximated from neighboring symbols.
pub size: Option<u32>,
/// The function name, demangled.
pub name: String,
}
/// The lookup result for an address.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct AddressInfo {
/// Information about the symbol which contains the looked up address.
pub symbol: SymbolInfo,
/// Information about the frames at the looked up address, if found in the debug info.
///
/// This Vec contains the file name and line number of the address.
/// If the compiler inlined a function call at this address, then this Vec
/// also contains the function name of the inlined function, along with the
/// file and line information inside that function.
///
/// The Vec begins with the callee-most ("innermost") inlinee, followed by
/// its caller, and so on. The last element is always the outer function.
pub frames: Option<Vec<FrameDebugInfo>>,
}
/// The lookup result from `lookup_sync`.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct SyncAddressInfo {
/// Information about the symbol which contains the looked up address.
pub symbol: SymbolInfo,
/// Information about the frames at the looked up address, from the debug info.
pub frames: Option<FramesLookupResult>,
}
/// Contains address debug info (inlined functions, file names, line numbers) if
/// available.
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum FramesLookupResult {
/// Debug info for this address was found in the symbol map.
///
/// This Vec contains the file name and line number of the address.
/// If the compiler inlined a function call at this address, then this Vec
/// also contains the function name of the inlined function, along with the
/// file and line information inside that function.
///
/// The Vec begins with the callee-most ("innermost") inlinee, followed by
/// its caller, and so on. The last element is always the outer function.
Available(Vec<FrameDebugInfo>),
/// Debug info for this address was not found in the symbol map, but can
/// potentially be found in a different file, with the help of
/// [`SymbolMap::lookup_external`](crate::SymbolMap::lookup_external).
///
/// This case can currently only be hit on macOS: On macOS, linking multiple
/// `.o` files together into a library or an executable does not copy the
/// DWARF information into the linked output. Instead, the linker stores the
/// paths to those original `.o` files, using 'OSO' stabs entries, and debug
/// info must be obtained from those original files.
External(ExternalFileAddressRef),
}
/// Information to find an external file and an address within that file, to be
/// passed to [`SymbolMap::lookup_external`](crate::SymbolMap::lookup_external) or
/// [`ExternalFileSymbolMap::lookup`](crate::ExternalFileSymbolMap::lookup).
#[derive(Debug, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct ExternalFileAddressRef {
/// Information needed to find the external file.
pub file_ref: ExternalFileRef,
/// Information needed to find the address within that external file.
pub address_in_file: ExternalFileAddressInFileRef,
}
/// Information to find an external file with debug information.
#[derive(Debug, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub enum ExternalFileRef {
MachoExternalObject {
/// The path to the file, as specified in the linked binary's object map.
file_path: String,
},
ElfExternalDwo {
comp_dir: String,
path: String,
},
}
/// Information to find an address within an external file, for debug info lookup.
#[derive(Debug, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub enum ExternalFileAddressInFileRef {
MachoOsoObject {
/// The name of the function symbol, as bytes, for the function which contains the
/// address we want to look up.
symbol_name: Vec<u8>,
/// The address to look up, as a relative offset from the function symbol address.
offset_from_symbol: u32,
},
MachoOsoArchive {
/// If the external file is an archive file (e.g. `libjs_static.a`, created with `ar`),
/// then this is the name of the archive member (e.g. `Unified_cpp_js_src23.o`),
/// otherwise `None`.
name_in_archive: String,
/// The name of the function symbol, as bytes, for the function which contains the
/// address we want to look up.
symbol_name: Vec<u8>,
/// The address to look up, as a relative offset from the function symbol address.
offset_from_symbol: u32,
},
ElfDwo {
dwo_id: u64,
svma: u64,
},
}
/// Implementation for slices.
impl<T: Deref<Target = [u8]> + Send + Sync> FileContents for T {
fn len(&self) -> u64 {
<[u8]>::len(self) as u64
}
fn read_bytes_at(&self, offset: u64, size: u64) -> FileAndPathHelperResult<&[u8]> {
<[u8]>::get(self, offset as usize..)
.and_then(|s| s.get(..size as usize))
.ok_or_else(|| {
std::io::Error::new(
std::io::ErrorKind::UnexpectedEof,
"FileContents::read_bytes_at for &[u8] was called with out-of-range indexes",
)
.into()
})
}
fn read_bytes_at_until(
&self,
range: Range<u64>,
delimiter: u8,
) -> FileAndPathHelperResult<&[u8]> {
if range.end < range.start {
return Err("Invalid range in read_bytes_at_until".into());
}
let slice = self.read_bytes_at(range.start, range.end - range.start)?;
if let Some(pos) = memchr::memchr(delimiter, slice) {
Ok(&slice[..pos])
} else {
Err(Box::new(std::io::Error::new(
std::io::ErrorKind::InvalidInput,
"Delimiter not found",
)))
}
}
#[inline]
fn read_bytes_into(
&self,
buffer: &mut Vec<u8>,
offset: u64,
size: usize,
) -> FileAndPathHelperResult<()> {
buffer.extend_from_slice(self.read_bytes_at(offset, size as u64)?);
Ok(())
}
}
#[cfg(feature = "partial_read_stats")]
const CHUNK_SIZE: u64 = 32 * 1024;
#[cfg(feature = "partial_read_stats")]
struct FileReadStats {
bytes_read: u64,
unique_chunks_read: BitVec,
read_call_count: u64,
}
#[cfg(feature = "partial_read_stats")]
impl FileReadStats {
pub fn new(size_in_bytes: u64) -> Self {
assert!(size_in_bytes > 0);
let chunk_count = (size_in_bytes - 1) / CHUNK_SIZE + 1;
FileReadStats {
bytes_read: 0,
unique_chunks_read: bitvec![0; chunk_count as usize],
read_call_count: 0,
}
}
pub fn record_read(&mut self, offset: u64, size: u64) {
if size == 0 {
return;
}
let start = offset;
let end = offset + size;
let chunk_index_start = start / CHUNK_SIZE;
let chunk_index_end = (end - 1) / CHUNK_SIZE + 1;
let chunkbits =
&mut self.unique_chunks_read[chunk_index_start as usize..chunk_index_end as usize];
if chunkbits.count_ones() != (chunk_index_end - chunk_index_start) as usize {
if chunkbits[0] {
self.bytes_read += chunk_index_end * CHUNK_SIZE - start;
} else {
self.bytes_read += (chunk_index_end - chunk_index_start) * CHUNK_SIZE;
}
self.read_call_count += 1;
}
chunkbits.set_all(true);
}
pub fn unique_bytes_read(&self) -> u64 {
self.unique_chunks_read.count_ones() as u64 * CHUNK_SIZE
}
}
#[cfg(feature = "partial_read_stats")]
impl std::fmt::Display for FileReadStats {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let unique_bytes_read = self.unique_bytes_read();
let repeated_bytes_read = self.bytes_read - unique_bytes_read;
let redudancy_percentage = repeated_bytes_read * 100 / unique_bytes_read;
write!(
f,
"{} total, {} unique, {}% redundancy, {} reads total",
bytesize::ByteSize(self.bytes_read),
bytesize::ByteSize(unique_bytes_read),
redudancy_percentage,
self.read_call_count
)
}
}
/// A wrapper for a FileContents object. The wrapper provides some convenience methods
/// and, most importantly, implements `ReadRef` for `&FileContentsWrapper`.
pub struct FileContentsWrapper<T: FileContents> {
file_contents: T,
len: u64,
#[cfg(feature = "partial_read_stats")]
partial_read_stats: std::sync::Mutex<FileReadStats>,
}
impl<T: FileContents> FileContentsWrapper<T> {
pub fn new(file_contents: T) -> Self {
let len = file_contents.len();
Self {
file_contents,
len,
#[cfg(feature = "partial_read_stats")]
partial_read_stats: std::sync::Mutex::new(FileReadStats::new(len)),
}
}
#[inline]
pub fn len(&self) -> u64 {
self.len
}
#[inline]
pub fn is_empty(&self) -> bool {
self.len == 0
}
#[inline]
pub fn read_bytes_at(&self, offset: u64, size: u64) -> FileAndPathHelperResult<&[u8]> {
#[cfg(feature = "partial_read_stats")]
self.partial_read_stats
.lock()
.unwrap()
.record_read(offset, size);
self.file_contents.read_bytes_at(offset, size)
}
#[inline]
pub fn read_bytes_at_until(
&self,
range: Range<u64>,
delimiter: u8,
) -> FileAndPathHelperResult<&[u8]> {
#[cfg(feature = "partial_read_stats")]
let start = range.start;
let bytes = self.file_contents.read_bytes_at_until(range, delimiter)?;
#[cfg(feature = "partial_read_stats")]
self.partial_read_stats
.lock()
.unwrap()
.record_read(start, (bytes.len() + 1) as u64);
Ok(bytes)
}
/// Append `size` bytes to `buffer`, starting to read at `offset` in the file.
/// If successful, `buffer` must have had its len increased exactly by `size`,
/// otherwise the caller may panic.
pub fn read_bytes_into(
&self,
buffer: &mut Vec<u8>,
offset: u64,
size: usize,
) -> FileAndPathHelperResult<()> {
#[cfg(feature = "partial_read_stats")]
self.partial_read_stats
.lock()
.unwrap()
.record_read(offset, size as u64);
self.file_contents.read_bytes_into(buffer, offset, size)
}
pub fn read_entire_data(&self) -> FileAndPathHelperResult<&[u8]> {
self.read_bytes_at(0, self.len())
}
pub fn full_range(&self) -> RangeReadRef<'_, &Self> {
RangeReadRef::new(self, 0, self.len)
}
pub fn range(&self, start: u64, size: u64) -> RangeReadRef<'_, &Self> {
RangeReadRef::new(self, start, size)
}
}
#[cfg(feature = "partial_read_stats")]
impl<T: FileContents> Drop for FileContentsWrapper<T> {
fn drop(&mut self) {
eprintln!("{}", self.partial_read_stats.lock());
}
}
impl<T: FileContents> Debug for FileContentsWrapper<T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "FileContentsWrapper({} bytes)", self.len())
}
}
impl<'data, T: FileContents> ReadRef<'data> for &'data FileContentsWrapper<T> {
#[inline]
fn len(self) -> Result<u64, ()> {
Ok(self.len())
}
#[inline]
fn read_bytes_at(self, offset: u64, size: u64) -> Result<&'data [u8], ()> {
self.read_bytes_at(offset, size).map_err(|_| {
// Note: We're discarding the error from the FileContents method here.
})
}
#[inline]
fn read_bytes_at_until(self, range: Range<u64>, delimiter: u8) -> Result<&'data [u8], ()> {
self.read_bytes_at_until(range, delimiter).map_err(|_| {
// Note: We're discarding the error from the FileContents method here.
})
}
}
#[test]
fn test_filecontents_readref_is_send_and_sync() {
fn assert_is_send<T: Send>() {}
fn assert_is_sync<T: Sync>() {}
#[allow(unused)]
fn wrapper<T: FileContents + Sync>() {
assert_is_send::<&FileContentsWrapper<T>>();
assert_is_sync::<&FileContentsWrapper<T>>();
}
}
#[derive(Clone, Copy)]
pub struct RangeReadRef<'data, T: ReadRef<'data>> {
original_readref: T,
range_start: u64,
range_size: u64,
_phantom_data: PhantomData<&'data ()>,
}
impl<'data, T: ReadRef<'data>> RangeReadRef<'data, T> {
pub fn new(original_readref: T, range_start: u64, range_size: u64) -> Self {
Self {
original_readref,
range_start,
range_size,
_phantom_data: PhantomData,
}
}
pub fn make_subrange(&self, start: u64, size: u64) -> Self {
Self::new(self.original_readref, self.range_start + start, size)
}
pub fn original_readref(&self) -> T {
self.original_readref
}
pub fn range_start(&self) -> u64 {
self.range_start
}
pub fn range_size(&self) -> u64 {
self.range_size
}
}
impl<'data, T: ReadRef<'data>> ReadRef<'data> for RangeReadRef<'data, T> {
#[inline]
fn len(self) -> Result<u64, ()> {
Ok(self.range_size)
}
#[inline]
fn read_bytes_at(self, offset: u64, size: u64) -> Result<&'data [u8], ()> {
let shifted_offset = self.range_start.checked_add(offset).ok_or(())?;
self.original_readref.read_bytes_at(shifted_offset, size)
}
#[inline]
fn read_bytes_at_until(self, range: Range<u64>, delimiter: u8) -> Result<&'data [u8], ()> {
if range.end < range.start {
return Err(());
}
let shifted_start = self.range_start.checked_add(range.start).ok_or(())?;
let shifted_end = self.range_start.checked_add(range.end).ok_or(())?;
let range = shifted_start..shifted_end;
self.original_readref.read_bytes_at_until(range, delimiter)
}
}
pub struct FileContentsCursor<'a, T: FileContents> {
/// The current offset of the cursor. This can be beyond the end of the file!
current_offset: u64,
/// The total length of the file.
total_len: u64,
inner: &'a FileContentsWrapper<T>,
}
impl<'a, T: FileContents> FileContentsCursor<'a, T> {
pub fn new(inner: &'a FileContentsWrapper<T>) -> Self {
let total_len = inner.len();
Self {
current_offset: 0,
total_len,
inner,
}
}
}
impl<T: FileContents> std::io::Read for FileContentsCursor<'_, T> {
fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
if self.current_offset >= self.total_len {
return Ok(0);
}
let remaining_len = self.total_len - self.current_offset;
let read_len = <[u8]>::len(buf).min(remaining_len as usize);
// Make a silly copy
let mut tmp_buf = Vec::with_capacity(read_len);
self.inner
.read_bytes_into(&mut tmp_buf, self.current_offset, read_len)
.map_err(|e| std::io::Error::new(std::io::ErrorKind::Other, e))?;
buf[..read_len].copy_from_slice(&tmp_buf);
self.current_offset += read_len as u64;
Ok(read_len)
}
}
impl<T: FileContents> std::io::Seek for FileContentsCursor<'_, T> {
fn seek(&mut self, pos: std::io::SeekFrom) -> std::io::Result<u64> {
/// Returns None on overflow / underflow.
///
/// Seeks beyond the file length are allowed.
fn inner(cur: u64, total_len: u64, pos: std::io::SeekFrom) -> Option<u64> {
let new_offset: u64 = match pos {
std::io::SeekFrom::Start(pos) => pos,
std::io::SeekFrom::End(pos) => {
(total_len as i64).checked_add(pos)?.try_into().ok()?
}
std::io::SeekFrom::Current(pos) => {
(cur as i64).checked_add(pos)?.try_into().ok()?
}
};
Some(new_offset)
}
match inner(self.current_offset, self.total_len, pos) {
Some(cur) => {
self.current_offset = cur;
Ok(cur)
}
None => Err(std::io::Error::new(std::io::ErrorKind::Other, "Bad Seek")),
}
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn file_contents_cursor_allows_seeks_beyond_eof() {
use std::io::{Read, Seek};
let bytes = b"Test";
let bytes = &bytes[..];
let file_contents_wrapper = FileContentsWrapper::new(bytes);
let mut cursor = FileContentsCursor::new(&file_contents_wrapper);
let mut read_buf = [0; 10];
let read_len = cursor.read(&mut read_buf[..3]).unwrap();
assert_eq!(read_len, 3);
assert_eq!(&read_buf[..3], b"Tes");
let new_pos = cursor.seek(std::io::SeekFrom::Current(2)).unwrap();
assert_eq!(new_pos, 5);
let read_len = cursor.read(&mut read_buf[..2]).unwrap();
assert_eq!(read_len, 0);
}
}