1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
use crate::octree::*;
use rayon::prelude::*;
pub struct DualGrid {
pub volumes: Vec<[MortonKey; 8]>,
}
impl DualGrid {
pub fn from_octree<T: Copy + Send + Sync>(octree: &HashedOctree<T>) -> Self {
let leaves = octree.leaves(MortonKey::root());
let volumes = leaves
.into_par_iter()
.map(|leaf| {
leaf2vert(leaf)
})
.flat_map_iter(|(vertex_lv, vertex_keys)| {
std::array::IntoIter::new(vertex_keys)
.enumerate()
.take_while(|(_vertex_i, vertex_k)| vertex_k != &MortonKey::none())
.flat_map(move |(vertex_i, vertex_k)| {
let neighbours = vert2leaf(vertex_k, vertex_lv);
std::iter::once(())
.take_while(move |()| {
for neighbour_i in 0..8 {
if neighbour_i == vertex_i {
continue;
}
let neighbour_k = neighbours[neighbour_i];
if !octree.node_exists(neighbour_k) {
continue;
}
if octree.is_subdivided(neighbour_k) {
return false;
}
if neighbour_i < vertex_i {
return false;
}
}
true
})
.map(move |()| {
let mut keys: [MortonKey; 8] =
unsafe { std::mem::MaybeUninit::uninit().assume_init() };
(0..8).for_each(|neighbour_i| {
let mut neighbour_k = neighbours[neighbour_i];
while neighbour_k != MortonKey::none()
&& !octree.node_exists(neighbour_k)
{
neighbour_k = neighbour_k.parent();
}
keys[neighbour_i] = neighbour_k;
});
keys
})
})
})
.collect();
Self { volumes }
}
}
const DIL_X: u64 = 0b001001001001001001001001001001001001001001001001001001001001001u64;
const DIL_Y: u64 = 0b010010010010010010010010010010010010010010010010010010010010010u64;
const DIL_Z: u64 = 0b100100100100100100100100100100100100100100100100100100100100100u64;
fn leaf2vert(key: MortonKey) -> (u32, [MortonKey; 8]) {
let level = key.level();
let level_key: u64 = 1 << (3 * level);
let mut keys: [MortonKey; 8] = unsafe { std::mem::MaybeUninit::uninit().assume_init() };
(0..8u64).into_iter().for_each(|vertex_i| {
let vertex_key = (((key.0 | !DIL_X) + (vertex_i & DIL_X)) & DIL_X)
| (((key.0 | !DIL_Y) + (vertex_i & DIL_Y)) & DIL_Y)
| (((key.0 | !DIL_Z) + (vertex_i & DIL_Z)) & DIL_Z);
keys[vertex_i as usize] = if (vertex_key >= (level_key << 1))
|| ((vertex_key - level_key) & DIL_X) == 0
|| ((vertex_key - level_key) & DIL_Y) == 0
|| ((vertex_key - level_key) & DIL_Z) == 0
{
MortonKey::none()
} else {
MortonKey(vertex_key)
};
});
(level, keys)
}
fn vert2leaf(vertex_k: MortonKey, vertex_lv: u32) -> [MortonKey; 8] {
let dc = vertex_k.0 << (vertex_lv - vertex_k.level()) * 3;
let mut keys: [MortonKey; 8] = unsafe { std::mem::MaybeUninit::uninit().assume_init() };
(0..8u64).into_iter().for_each(|node_i| {
keys[node_i as usize] = MortonKey(
(((dc & DIL_X) - (node_i & DIL_X)) & DIL_X)
| (((dc & DIL_Y) - (node_i & DIL_Y)) & DIL_Y)
| (((dc & DIL_Z) - (node_i & DIL_Z)) & DIL_Z),
);
});
keys
}