1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
#![forbid(unsafe_code)]
//! QUIC cryptography primitives and traits
//!
//! ## Decryption flow
//!
//! The lifecycle of a protected and encrypted payload follows the following flow:
//!
//! ```text
//! +----------------+
//! |ProtectedPayload|
//! +-------+--------+
//! |
//! | unprotect()
//! |
//! +----------+------------+
//! | |
//! | v
//! | +---------+-----------+
//! | |TruncatedPacketNumber|
//! v +---------+-----------+
//! +--------+--------+ |
//! |EncryptedPayload | | expand(largest_acknowledged_packet_number)
//! +--------+--------+ v
//! | +-----+------+
//! | |PacketNumber|
//! | +-----+------+
//! | |
//! +----------+------------+
//! |
//! | decrypt()
//! v
//! +------+---------+
//! |CleartextPayload|
//! +----------------+
//! ```
//!
//! The implementation of the decryption flow looks like the following:
//!
//! ```rust,ignore
//! let crypto = ..; // initialize crypto keys
//! let protected_payload = ..; // decode the payload from the incoming packet
//! let header_len = ..; // decode packet to derive header_len
//! let largest_acknowledged_packet_number = ..; // fetch the largest packet number from connection state
//!
//! let (truncated_packet_number, encrypted_payload) = crate::crypto::unprotect(
//! &crypto,
//! largest_acknowledged_packet_number.space(),
//! header_len,
//! protected_payload,
//! )?;
//!
//! let packet_number = truncated_packet_number.expand(largest_acknowledged_packet_number)?;
//!
//! let cleartext_payload = crate::crypto::decrypt(
//! &crypto,
//! packet_number,
//! encrypted_payload,
//! )?;
//! ```
//!
//! ## Encryption flow
//!
//! Inversely, a cleartext payload follows the following flow:
//!
//! ```text
//! +----------------+ +------------+
//! |CleartextPayload| |PacketNumber|
//! +-------+--------+ +------+-----+
//! | |
//! | +--------------+-----------------------------------+
//! | | |
//! | | truncate(largest_acknowledged_packet_number) |
//! | | |
//! | | |
//! | encode() +----------+----------+ |
//! +<-------------+TruncatedPacketNumber| |
//! | +----------+----------+ |
//! | | |
//! | | len() |
//! | v |
//! | apply_mask() +-------+-------+ |
//! <-----------------+PacketNumberLen| |
//! | +--+----+-------+ |
//! | | | |
//! +--------------------(----+---------------+----------------------------------+
//! | |
//! | | encrypt()
//! | |
//! | +--------+-------+
//! | |EncryptedPayload|
//! | +--------+-------+
//! | |
//! | |
//! +-----------+--------+
//! |
//! | protect()
//! |
//! +-------+--------+
//! |ProtectedPayload|
//! +----------------+
//! ```
//!
//! The implementation of the encryption flow looks like the following:
//!
//! ```rust,ignore
//! let crypto = ..; // initialize crypto keys
//! let cleartext_payload = ..; // encode an outgoing packet
//! let header_len = ..; // encode packet to derive header_len
//! let packet_number = ..; // use the packet number from the outgoing packet
//! let largest_acknowledged_packet_number = ..; // fetch the largest packet number from connection state
//!
//! let truncated_packet_number = packet_number.truncate(largest_acknowledged_packet_number).unwrap();
//! cleartext_payload[header_len..].encode(truncated_packet_number);
//! let packet_number_len = truncated_packet_number.len();
//! cleartext_payload[0] &= packet_number_len.into_packet_tag_mask();
//!
//! let (encrypted_payload, remaining_payload) = crate::crypto::encrypt(
//! &crypto,
//! packet_number,
//! packet_number_len,
//! header_len,
//! cleartext_payload,
//! )?;
//!
//! let protected_payload =
//! crate::crypto::protect(&crypto, encrypted_payload)?;
//! ```
//!
pub mod application;
pub mod error;
pub mod handshake;
pub mod header_crypto;
pub mod initial;
pub mod key;
pub mod label;
pub mod one_rtt;
pub mod packet_protection;
pub mod payload;
pub mod retry;
pub mod tls;
pub mod zero_rtt;
pub use application::*;
pub use error::*;
pub use handshake::*;
pub use header_crypto::*;
pub use initial::*;
pub use key::*;
pub use one_rtt::*;
pub use packet_protection::*;
pub use payload::*;
pub use retry::RetryKey;
pub use zero_rtt::*;
/// Trait which aggregates all Crypto types
pub trait CryptoSuite {
type HandshakeKey: HandshakeKey;
type HandshakeHeaderKey: HandshakeHeaderKey;
type InitialKey: InitialKey<HeaderKey = Self::InitialHeaderKey>;
type InitialHeaderKey: InitialHeaderKey;
type OneRttKey: OneRttKey;
type OneRttHeaderKey: OneRttHeaderKey;
type ZeroRttKey: ZeroRttKey;
type ZeroRttHeaderKey: ZeroRttHeaderKey;
type RetryKey: RetryKey;
}
use crate::packet::number::{
PacketNumber, PacketNumberLen, PacketNumberSpace, TruncatedPacketNumber,
};
use s2n_codec::{DecoderBufferMut, DecoderError, Encoder, EncoderBuffer};
/// Protects an `EncryptedPayload` into a `ProtectedPayload`
#[inline]
pub fn protect<'a, K: HeaderKey>(
crypto: &K,
payload: EncryptedPayload<'a>,
) -> Result<ProtectedPayload<'a>, DecoderError> {
let sample = payload.header_protection_sample(crypto.sealing_sample_len())?;
let mask = crypto.sealing_header_protection_mask(sample);
Ok(apply_header_protection(mask, payload))
}
/// Removes packet protection from a `ProtectedPayload` into a `EncryptedPayload`
/// and associated `TruncatedPacketNumber`
#[inline]
pub fn unprotect<'a, K: HeaderKey>(
crypto: &K,
space: PacketNumberSpace,
payload: ProtectedPayload<'a>,
) -> Result<(TruncatedPacketNumber, EncryptedPayload<'a>), DecoderError> {
let sample = payload.header_protection_sample(crypto.opening_sample_len())?;
let mask = crypto.opening_header_protection_mask(sample);
remove_header_protection(space, mask, payload)
}
/// Encrypts a cleartext payload with a crypto key into a `EncryptedPayload`
#[inline]
pub fn encrypt<'a, K: Key>(
key: &K,
packet_number: PacketNumber,
packet_number_len: PacketNumberLen,
header_len: usize,
mut payload: EncoderBuffer<'a>,
) -> Result<(EncryptedPayload<'a>, EncoderBuffer<'a>), CryptoError> {
let header_with_pn_len = packet_number_len.bytesize() + header_len;
// Make space for the key tag
payload.write_repeated(key.tag_len(), 0);
let (payload, remaining) = payload.split_off();
debug_assert!(
header_with_pn_len < payload.len(),
"header len ({}) should be less than payload ({})",
header_with_pn_len,
payload.len()
);
let (header, body) = payload.split_at_mut(header_with_pn_len);
key.encrypt(packet_number.as_crypto_nonce(), header, body)?;
let encrypted_payload = EncryptedPayload::new(header_len, packet_number_len, payload);
let remaining = EncoderBuffer::new(remaining);
Ok((encrypted_payload, remaining))
}
/// Decrypts a `EncryptedPayload` into clear text
#[inline]
pub fn decrypt<'a, K: Key>(
key: &K,
packet_number: PacketNumber,
payload: EncryptedPayload<'a>,
) -> Result<(DecoderBufferMut<'a>, DecoderBufferMut<'a>), CryptoError> {
let (header, payload) = payload.split_mut();
key.decrypt(packet_number.as_crypto_nonce(), header, payload)?;
// remove the key tag from payload
let payload_len = payload.len() - key.tag_len();
let payload = &mut payload[0..payload_len];
Ok((header.into(), payload.into()))
}