1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

use crate::{
    connection::ProcessingError,
    crypto::{application::limited, OneRttKey, ProtectedPayload},
    packet::{
        encoding::PacketEncodingError,
        number::PacketNumber,
        short::{CleartextShort, EncryptedShort},
        KeyPhase,
    },
    time::{timer, Timer, Timestamp},
    transport,
};
use core::ops;
use s2n_codec::EncoderBuffer;

pub struct KeySet<K> {
    /// The current [`KeyPhase`]
    key_phase: KeyPhase,

    key_derivation_timer: Timer,

    //= https://www.rfc-editor.org/rfc/rfc9001#section-6.6
    //# In addition to counting packets sent, endpoints MUST count the number
    //# of received packets that fail authentication during the lifetime of a
    //# connection.
    packet_decryption_failures: u64,
    aead_integrity_limit: u64,
    /// The number of times the key has been rotated
    generation: u16,

    /// Set of keys for the current and next phase
    crypto: KeyArray<K>,

    limits: limited::Limits,
}

impl<K: OneRttKey> KeySet<K> {
    pub fn new(crypto: K, limits: limited::Limits) -> Self {
        //= https://www.rfc-editor.org/rfc/rfc9001#section-6
        //# The Key Phase bit is initially set to 0 for the
        //# first set of 1-RTT packets and toggled to signal each subsequent key
        //# update.

        //= https://www.rfc-editor.org/rfc/rfc9001#section-6.3
        //# Endpoints responding to an apparent key update MUST NOT generate a
        //# timing side-channel signal that might indicate that the Key Phase bit
        //# was invalid (see Section 9.4).

        //= https://www.rfc-editor.org/rfc/rfc9001#section-5.4
        //# The same header protection key is used for the duration of the
        //# connection, with the value not changing after a key update (see
        //# Section 6).  This allows header protection to be used to protect the
        //# key phase.
        // By pre-generating the next key, we can respond to a KeyUpdate without exposing a timing
        // side channel.
        let aead_integrity_limit = crypto.aead_integrity_limit();
        let next_key = limited::Key::new(crypto.derive_next_key());
        let active_key = limited::Key::new(crypto);

        Self {
            key_phase: KeyPhase::Zero,
            key_derivation_timer: Default::default(),
            packet_decryption_failures: 0,
            aead_integrity_limit,
            generation: 0,
            crypto: KeyArray([active_key, next_key]),
            limits,
        }
    }

    /// Rotating the phase will switch the active key
    fn rotate_phase(&mut self) {
        self.generation += 1;
        self.key_phase = KeyPhase::next_phase(self.key_phase);
    }

    /// Derive a new key based on the active key, and store it in the non-active slot
    fn derive_and_store_next_key(&mut self) {
        //= https://www.rfc-editor.org/rfc/rfc9001#section-6.3
        //# Once generated, the next set of packet protection keys SHOULD be
        //# retained, even if the packet that was received was subsequently
        //# discarded.

        //= https://www.rfc-editor.org/rfc/rfc9001#section-6.5
        //# After this period, old read keys and their corresponding secrets
        //# SHOULD be discarded.

        //= https://www.rfc-editor.org/rfc/rfc9001#section-6.5
        //# These updated keys MAY replace the previous keys at that time.

        let next_key = self.active_key().derive_next_key();
        let next_phase = KeyPhase::next_phase(self.key_phase);
        self.crypto[next_phase] = limited::Key::new(next_key);
    }

    /// Set the timer to derive a new key after timestamp
    pub fn set_derivation_timer(&mut self, timestamp: Timestamp) {
        self.key_derivation_timer.set(timestamp)
    }

    /// Returns whether there is a key update in progress.
    pub fn key_update_in_progress(&self) -> bool {
        self.key_derivation_timer.is_armed()
    }

    /// Passes the key for the the requested phase to a callback function. Integrity limits are
    /// enforced.
    ///
    /// Returns the decrypted packet and generation if the key phase was rotated.
    pub fn decrypt_packet<'a>(
        &mut self,
        packet: EncryptedShort<'a>,
        largest_acknowledged_packet_number: PacketNumber,
        pto: Timestamp,
    ) -> Result<(CleartextShort<'a>, Option<u16>), ProcessingError> {
        let mut phase_to_use = self.key_phase() as u8;
        let packet_phase = packet.key_phase();
        let phase_switch = phase_to_use != (packet_phase as u8);
        phase_to_use ^= phase_switch as u8;

        if self.key_update_in_progress() && phase_switch {
            //= https://www.rfc-editor.org/rfc/rfc9001#section-6.5
            //# An endpoint MAY allow a period of approximately the Probe Timeout
            //# (PTO; see [QUIC-RECOVERY]) after promoting the next set of receive
            //# keys to be current before it creates the subsequent set of packet
            //# protection keys.

            //= https://www.rfc-editor.org/rfc/rfc9001#section-6.4
            //# Packets with higher packet numbers MUST be protected with either the
            //# same or newer packet protection keys than packets with lower packet
            //# numbers.
            // During this PTO we can still process delayed packets, reducing retransmits
            // required from the peer. We know the packets are delayed because they have a
            // lower packet number than expected and the old key phase.
            if packet.packet_number < largest_acknowledged_packet_number {
                phase_to_use = packet.key_phase() as u8;
            }
        }

        let key = &mut self.crypto[phase_to_use.into()];

        let result = packet.decrypt(key.key());

        key.on_packet_decryption(&self.limits);

        match result {
            Ok(packet) => {
                let generation = if packet_phase != self.key_phase() {
                    //= https://www.rfc-editor.org/rfc/rfc9001#section-6.2
                    //# Sending keys MUST be updated before sending an
                    //# acknowledgement for the packet that was received with updated keys.

                    //= https://www.rfc-editor.org/rfc/rfc9001#section-6.2
                    //# The endpoint MUST update its
                    //# send keys to the corresponding key phase in response, as described in
                    //# Section 6.1.
                    self.rotate_phase();

                    //= https://www.rfc-editor.org/rfc/rfc9001#section-6.3
                    //# Endpoints responding to an apparent key update MUST NOT generate a
                    //# timing side-channel signal that might indicate that the Key Phase bit
                    //# was invalid (see Section 9.4).

                    //= https://www.rfc-editor.org/rfc/rfc9001#section-6.5
                    //# An endpoint SHOULD retain old read keys for no more than three times
                    //# the PTO after having received a packet protected using the new keys.

                    //= https://www.rfc-editor.org/rfc/rfc9001#section-6.1
                    //# An endpoint SHOULD
                    //# retain old keys for some time after unprotecting a packet sent using
                    //# the new keys.
                    self.set_derivation_timer(pto);
                    Some(self.generation)
                } else {
                    None
                };

                Ok((packet, generation))
            }
            Err(err) => {
                //= https://www.rfc-editor.org/rfc/rfc9001#section-6.6
                //# In addition to counting packets sent, endpoints MUST count the number
                //# of received packets that fail authentication during the lifetime of a
                //# connection.
                self.packet_decryption_failures += 1;

                //= https://www.rfc-editor.org/rfc/rfc9001#section-6.6
                //# If a key update is not possible or
                //# integrity limits are reached, the endpoint MUST stop using the
                //# connection and only send stateless resets in response to receiving
                //# packets.

                //= https://www.rfc-editor.org/rfc/rfc9001#section-6.6
                //# If the total number of received packets that fail
                //# authentication within the connection, across all keys, exceeds the
                //# integrity limit for the selected AEAD, the endpoint MUST immediately
                //# close the connection with a connection error of type
                //# AEAD_LIMIT_REACHED and not process any more packets.
                if self.decryption_error_count() > self.aead_integrity_limit {
                    return Err(transport::Error::AEAD_LIMIT_REACHED.into());
                }

                Err(err.into())
            }
        }
    }

    /// This is the KeyPhase that should be used to encrypt a given packet.
    pub fn encryption_phase(&self) -> KeyPhase {
        //= https://www.rfc-editor.org/rfc/rfc9001#section-6.6
        //# Endpoints MUST initiate a key update
        //# before sending more protected packets than the confidentiality limit
        //# for the selected AEAD permits.
        if self.active_key().needs_update(&self.limits) {
            return KeyPhase::next_phase(self.key_phase());
        }

        self.key_phase()
    }

    pub fn encrypt_packet<'a, F>(
        &mut self,
        buffer: EncoderBuffer<'a>,
        f: F,
    ) -> Result<(ProtectedPayload<'a>, EncoderBuffer<'a>), PacketEncodingError<'a>>
    where
        F: FnOnce(
            EncoderBuffer<'a>,
            &K,
            KeyPhase,
        )
            -> Result<(ProtectedPayload<'a>, EncoderBuffer<'a>), PacketEncodingError<'a>>,
    {
        let phase = self.encryption_phase();
        if self.crypto[phase].expired() {
            //= https://www.rfc-editor.org/rfc/rfc9001#section-6.6
            //# If the total number of encrypted packets with the same key
            //# exceeds the confidentiality limit for the selected AEAD, the endpoint
            //# MUST stop using those keys.

            //= https://www.rfc-editor.org/rfc/rfc9001#section-6.6
            //# If a key update is not possible or
            //# integrity limits are reached, the endpoint MUST stop using the
            //# connection and only send stateless resets in response to receiving
            //# packets.
            return Err(PacketEncodingError::AeadLimitReached(buffer));
        }

        let r = f(buffer, self.crypto[phase].key(), phase)?;

        //= https://www.rfc-editor.org/rfc/rfc9001#section-6.6
        //# Endpoints MUST count the number of encrypted packets for each set of
        //# keys.
        self.crypto[phase].on_packet_encryption(&self.limits);

        Ok(r)
    }

    pub fn on_timeout(&mut self, timestamp: Timestamp) {
        if self
            .key_derivation_timer
            .poll_expiration(timestamp)
            .is_ready()
        {
            //= https://www.rfc-editor.org/rfc/rfc9001#section-6.5
            //# An endpoint SHOULD retain old read keys for no more than three times
            //# the PTO after having received a packet protected using the new keys.
            self.derive_and_store_next_key();
        }
    }

    pub fn key_phase(&self) -> KeyPhase {
        self.key_phase
    }

    pub fn active_key(&self) -> &limited::Key<K> {
        &self.crypto[self.key_phase]
    }

    pub fn active_key_mut(&mut self) -> &mut limited::Key<K> {
        &mut self.crypto[self.key_phase]
    }

    fn decryption_error_count(&self) -> u64 {
        self.packet_decryption_failures
    }

    pub fn cipher_suite(&self) -> crate::crypto::tls::CipherSuite {
        self.crypto.0[0].key().cipher_suite()
    }
}

impl<K> timer::Provider for KeySet<K> {
    #[inline]
    fn timers<Q: timer::Query>(&self, query: &mut Q) -> timer::Result {
        self.key_derivation_timer.timers(query)?;
        Ok(())
    }
}

struct KeyArray<K>([limited::Key<K>; 2]);

impl<K> ops::Index<KeyPhase> for KeyArray<K> {
    type Output = limited::Key<K>;

    #[inline]
    fn index(&self, key_phase: KeyPhase) -> &Self::Output {
        &self.0[(key_phase as u8) as usize]
    }
}

impl<K> ops::IndexMut<KeyPhase> for KeyArray<K> {
    #[inline]
    fn index_mut(&mut self, key_phase: KeyPhase) -> &mut Self::Output {
        &mut self.0[(key_phase as u8) as usize]
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{
        connection::id::ConnectionInfo,
        crypto::{
            testing::{HeaderKey as TestHeaderKey, Key as TestKey},
            ProtectedPayload,
        },
        inet::SocketAddress,
        packet::{
            encoding::PacketEncodingError, number::PacketNumberSpace, short::ProtectedShort,
            KeyPhase,
        },
        time::{testing::Clock, Clock as _},
        varint::VarInt,
    };
    use core::time::Duration;
    use s2n_codec::{DecoderBufferMut, EncoderBuffer};

    #[test]
    fn test_key_derivation_timer() {
        let mut clock = Clock::default();
        let now = clock.get_time();
        let mut keyset = KeySet::new(TestKey::default(), Default::default());
        keyset.rotate_phase();

        keyset.set_derivation_timer(now + Duration::from_millis(10));

        clock.inc_by(Duration::from_millis(8));
        keyset.on_timeout(clock.get_time());
        //= https://www.rfc-editor.org/rfc/rfc9001#section-6.1
        //= type=test
        //# An endpoint SHOULD
        //# retain old keys for some time after unprotecting a packet sent using
        //# the new keys.
        assert_eq!(keyset.crypto[KeyPhase::Zero].key().derivations, 0);

        clock.inc_by(Duration::from_millis(8));
        keyset.on_timeout(clock.get_time());

        //= https://www.rfc-editor.org/rfc/rfc9001#section-6.5
        //= type=test
        //# After this period, old read keys and their corresponding secrets
        //# SHOULD be discarded.
        assert_eq!(keyset.crypto[KeyPhase::Zero].key().derivations, 2);
    }

    #[test]
    fn test_key_set() {
        //= https://www.rfc-editor.org/rfc/rfc9001#section-6.3
        //= type=test
        //# For this reason, endpoints MUST be able to retain two sets of packet
        //# protection keys for receiving packets: the current and the next.

        let keyset = KeySet::new(TestKey::default(), Default::default());

        assert_eq!(keyset.crypto[KeyPhase::Zero].key().derivations, 0);
        assert_eq!(keyset.crypto[KeyPhase::One].key().derivations, 1);
    }

    #[test]
    fn test_phase_rotation() {
        let mut keyset = KeySet::new(TestKey::default(), Default::default());

        assert_eq!(keyset.active_key().key().derivations, 0);
        keyset.rotate_phase();
        assert_eq!(keyset.active_key().key().derivations, 1);
    }

    #[test]
    fn test_key_derivation() {
        let mut keyset = KeySet::new(TestKey::default(), Default::default());

        keyset.rotate_phase();
        keyset.derive_and_store_next_key();
        keyset.rotate_phase();
        assert_eq!(keyset.active_key().key().derivations, 2);
    }

    //= https://www.rfc-editor.org/rfc/rfc9001#section-6.6
    //= type=test
    //# In addition to counting packets sent, endpoints MUST count the number
    //# of received packets that fail authentication during the lifetime of a
    //# connection.
    #[test]
    fn test_decryption_failure_counter() {
        let clock = Clock::default();
        let key = TestKey {
            fail_on_decrypt: true,
            ..Default::default()
        };
        let mut keyset = KeySet::new(key, Default::default());
        let mut data = [0; 128];
        let remote_address = SocketAddress::default();
        let connection_info = ConnectionInfo::new(&remote_address);
        let decoder_buffer = DecoderBufferMut::new(&mut data);

        let (encoded_packet, _remaining) =
            ProtectedShort::decode(0, decoder_buffer, &connection_info, &20).unwrap();

        let encrypted_packet = encoded_packet
            .unprotect(
                &TestHeaderKey::default(),
                PacketNumberSpace::ApplicationData.new_packet_number(VarInt::from_u8(0)),
            )
            .unwrap();

        assert_eq!(keyset.decryption_error_count(), 0);
        assert!(keyset
            .decrypt_packet(
                encrypted_packet,
                PacketNumberSpace::ApplicationData.new_packet_number(VarInt::from_u8(0)),
                clock.get_time(),
            )
            .is_err());
        assert_eq!(keyset.decryption_error_count(), 1);
    }

    //= https://www.rfc-editor.org/rfc/rfc9001#section-6.6
    //= type=test
    //# If the total number of received packets that fail
    //# authentication within the connection, across all keys, exceeds the
    //# integrity limit for the selected AEAD, the endpoint MUST immediately
    //# close the connection with a connection error of type
    //# AEAD_LIMIT_REACHED and not process any more packets.
    #[test]
    fn test_decryption_failure_enforced_aead_limit() {
        let clock = Clock::default();
        let key = TestKey {
            integrity_limit: 0,
            fail_on_decrypt: true,
            ..Default::default()
        };
        let mut keyset = KeySet::new(key, Default::default());
        let mut data = [0; 128];
        let remote_address = SocketAddress::default();
        let connection_info = ConnectionInfo::new(&remote_address);
        let decoder_buffer = DecoderBufferMut::new(&mut data);

        let (encoded_packet, _remaining) =
            ProtectedShort::decode(0, decoder_buffer, &connection_info, &20).unwrap();

        let encrypted_packet = encoded_packet
            .unprotect(
                &TestHeaderKey::default(),
                PacketNumberSpace::ApplicationData.new_packet_number(VarInt::from_u8(0)),
            )
            .unwrap();

        assert_eq!(keyset.decryption_error_count(), 0);
        assert_eq!(
            keyset
                .decrypt_packet(
                    encrypted_packet,
                    PacketNumberSpace::ApplicationData.new_packet_number(VarInt::from_u8(0)),
                    clock.get_time(),
                )
                .err(),
            Some(ProcessingError::ConnectionError(
                (transport::Error::AEAD_LIMIT_REACHED).into()
            ))
        );
    }

    //= https://www.rfc-editor.org/rfc/rfc9001#section-6.6
    //= type=test
    //# Endpoints MUST count the number of encrypted packets for each set of
    //# keys.
    #[test]
    fn test_encrypted_packet_count_increased() {
        let key = TestKey::default();
        let mut keyset = KeySet::new(key, Default::default());
        let mut encoder_bytes = [0; 512];
        let buffer = EncoderBuffer::new(&mut encoder_bytes);
        let mut decoder_bytes = [0; 512];

        assert_eq!(keyset.active_key().encrypted_packets(), 0);
        assert!(keyset
            .encrypt_packet(buffer, |buffer, _key, _phase| {
                let payload = ProtectedPayload::new(0, &mut decoder_bytes);

                Ok((payload, buffer))
            })
            .is_ok());

        assert_eq!(keyset.active_key().encrypted_packets(), 1);
    }

    #[test]
    fn test_encrypted_packet_key_update_window() {
        let key = TestKey {
            confidentiality_limit: 10000,
            ..Default::default()
        };
        let mut keyset = KeySet::new(key, Default::default());
        let mut encoder_bytes = [0; 512];
        let buffer = EncoderBuffer::new(&mut encoder_bytes);
        let mut decoder_bytes = [0; 512];

        // The first encryption should use the expected keyphase, and put us into the
        // KEY_UPDATE_WINDOW.
        assert_eq!(keyset.active_key().encrypted_packets(), 0);
        assert!(!keyset.active_key().needs_update(&keyset.limits));
        assert!(keyset
            .encrypt_packet(buffer, |buffer, _key, _phase| {
                let payload = ProtectedPayload::new(0, &mut decoder_bytes);

                Ok((payload, buffer))
            })
            .is_ok());

        //= https://www.rfc-editor.org/rfc/rfc9001#section-6.6
        //= type=test
        //# Endpoints MUST initiate a key update
        //# before sending more protected packets than the confidentiality limit
        //# for the selected AEAD permits.

        // Subsequent encryptions should be in the next phase and our key should need an update.
        assert_eq!(keyset.encryption_phase(), KeyPhase::One);
        assert!(keyset.active_key().needs_update(&keyset.limits));
    }

    //= https://www.rfc-editor.org/rfc/rfc9001#section-6.6
    //= type=test
    //# If the total number of encrypted packets with the same key
    //# exceeds the confidentiality limit for the selected AEAD, the endpoint
    //# MUST stop using those keys.
    #[test]
    fn test_encrypted_packet_aead_limit() {
        let limit = 10_000;
        let key = TestKey {
            confidentiality_limit: limit,
            ..Default::default()
        };
        let mut keyset = KeySet::new(key, Default::default());
        let mut encoder_bytes = [0; 512];

        // The KeySet chooses the appropriate key phase. Trying to encrypt one more than the limit
        // will attempt a key update after the first encryption, and fill the update window of the
        // next key (because the key update never completes).
        for _ in 0..limit + 1 {
            let buffer = EncoderBuffer::new(&mut encoder_bytes);
            let mut decoder_bytes = [0; 512];
            assert!(keyset
                .encrypt_packet(buffer, |buffer, _key, _phase| {
                    let payload = ProtectedPayload::new(0, &mut decoder_bytes);

                    Ok((payload, buffer))
                })
                .is_ok());

            // As long as the keyphase is constant, we have not initiated any KeyUpdate, and we
            // have not derived any new keys.
            assert_eq!(keyset.key_phase(), KeyPhase::Zero);
        }

        // The key in KeyPhase::Zero will have encrypted a single packet.
        // Each additional request will be within the KEY_UPDATE_WINDOW, so the next key phase is
        // used.
        assert_eq!(keyset.crypto[KeyPhase::Zero].encrypted_packets(), 1);

        // The next key phase should have limit encryptions
        assert_eq!(keyset.crypto[KeyPhase::One].encrypted_packets(), limit);

        // The final encryption should push us over the AEAD limit and we should fail.
        let buffer = EncoderBuffer::new(&mut encoder_bytes);
        let mut decoder_bytes = [0; 512];
        assert!(matches!(
            keyset.encrypt_packet(buffer, |buffer, _key, _phase| {
                let payload = ProtectedPayload::new(0, &mut decoder_bytes);

                Ok((payload, buffer))
            }),
            Err(PacketEncodingError::AeadLimitReached(_))
        ));
    }
}