1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

use crate::{event, inet::ExplicitCongestionNotification, path};
use core::{
    task::{Context, Poll},
    time::Duration,
};

pub mod handle_map;
pub mod router;

pub trait Tx: Sized {
    type PathHandle;
    // TODO make this generic over lifetime
    // See https://github.com/aws/s2n-quic/issues/1742
    type Queue: Queue<Handle = Self::PathHandle>;
    type Error;

    /// Returns a future that yields after a packet is ready to be transmitted
    #[inline]
    fn ready(&mut self) -> TxReady<Self> {
        TxReady(self)
    }

    /// Polls the IO provider for capacity to send a packet
    fn poll_ready(&mut self, cx: &mut Context) -> Poll<Result<(), Self::Error>>;

    /// Calls the provided callback with the IO provider queue
    fn queue<F: FnOnce(&mut Self::Queue)>(&mut self, f: F);

    /// Handles the queue error and potentially publishes an event
    fn handle_error<E: event::EndpointPublisher>(self, error: Self::Error, event: &mut E);
}

impl_ready_future!(Tx, TxReady, Result<(), T::Error>);

/// Extension traits for Tx channels
pub trait TxExt: Tx {
    /// Routes messages into one channel or another
    #[inline]
    fn with_router<Router, Other>(
        self,
        router: Router,
        other: Other,
    ) -> router::Channel<Router, Self, Other>
    where
        Router: router::Router,
        Other: Tx,
    {
        router::Channel {
            router,
            a: self,
            b: other,
        }
    }

    /// Maps one type of handle to another with a mapping function
    #[inline]
    fn with_handle_map<Map, Handle>(self, map: Map) -> handle_map::Channel<Map, Self, Handle>
    where
        Map: Fn(&Handle) -> Self::PathHandle,
    {
        handle_map::Channel {
            map,
            tx: self,
            handle: Default::default(),
        }
    }
}

/// Implement the extension traits for all Tx queues
impl<T: Tx> TxExt for T {}

/// A structure capable of queueing and transmitting messages
pub trait Queue {
    type Handle: path::Handle;

    /// Set to true if the queue supports setting ECN markings
    const SUPPORTS_ECN: bool = false;

    /// Set to true if the queue supports pacing of sending messages
    const SUPPORTS_PACING: bool = false;

    /// Set to true if the queue supports setting IPv6 flow labels
    const SUPPORTS_FLOW_LABELS: bool = false;

    /// Pushes a message into the transmission queue
    ///
    /// The index of the message is returned to enable further operations to be
    /// performed, e.g. encryption.
    fn push<M: Message<Handle = Self::Handle>>(&mut self, message: M) -> Result<Outcome, Error>;

    /// Flushes any pending messages from the TX queue.
    ///
    /// This should be called between multiple connections to ensure GSO segments aren't shared.
    #[inline]
    fn flush(&mut self) {
        // default as no-op
    }

    /// Returns the number of remaining datagrams that can be transmitted
    fn capacity(&self) -> usize;

    /// Returns `true` if the queue will accept additional transmissions
    #[inline]
    fn has_capacity(&self) -> bool {
        self.capacity() != 0
    }
}

pub struct Outcome {
    pub len: usize,
    pub index: usize,
}

#[derive(Copy, Clone, Debug, PartialEq, PartialOrd, Eq)]
pub enum Error {
    /// The provided message did not write a payload
    EmptyPayload,

    /// The provided buffer was too small for the desired payload
    UndersizedBuffer,

    /// The transmission queue is at capacity
    AtCapacity,
}

/// Abstraction over a message to be sent on a socket
///
/// Instead of a concrete struct with eagerly evaluated fields,
/// using trait callbacks ensure messages only need to compute what
/// the actual transmission queue requires. For example, if the transmission
/// queue cannot set ECN markings, it will not call the [`Message::ecn`] function.
pub trait Message {
    type Handle: path::Handle;

    /// Returns the path handle on which this message should be sent
    fn path_handle(&self) -> &Self::Handle;

    /// Returns the ECN markings for the message
    fn ecn(&mut self) -> ExplicitCongestionNotification;

    /// Returns the Duration for which the message will be delayed.
    ///
    /// This is used in scenarios where packets need to be paced.
    fn delay(&mut self) -> Duration;

    /// Returns the IPv6 flow label for the message
    fn ipv6_flow_label(&mut self) -> u32;

    /// Returns true if the packet can be used in a GSO packet
    fn can_gso(&self, segment_len: usize, segment_count: usize) -> bool;

    /// Writes the payload of the message to an output buffer
    fn write_payload(&mut self, buffer: PayloadBuffer, gso_offset: usize) -> Result<usize, Error>;
}

#[derive(Debug)]
pub struct PayloadBuffer<'a>(&'a mut [u8]);

impl<'a> PayloadBuffer<'a> {
    #[inline]
    pub fn new(bytes: &'a mut [u8]) -> Self {
        Self(bytes)
    }

    /// # Safety
    ///
    /// This function should only be used in the case that the writer has its own safety checks in place
    #[inline]
    pub unsafe fn into_mut_slice(self) -> &'a mut [u8] {
        self.0
    }

    #[track_caller]
    #[inline]
    pub fn write(&mut self, bytes: &[u8]) -> Result<usize, Error> {
        if bytes.is_empty() {
            return Err(Error::EmptyPayload);
        }

        if let Some(buffer) = self.0.get_mut(0..bytes.len()) {
            buffer.copy_from_slice(bytes);
            Ok(bytes.len())
        } else {
            debug_assert!(
                false,
                "tried to write more bytes than was available in the buffer"
            );
            Err(Error::UndersizedBuffer)
        }
    }
}

impl<Handle: path::Handle, Payload: AsRef<[u8]>> Message for (Handle, Payload) {
    type Handle = Handle;

    fn path_handle(&self) -> &Self::Handle {
        &self.0
    }

    fn ecn(&mut self) -> ExplicitCongestionNotification {
        Default::default()
    }

    fn delay(&mut self) -> Duration {
        Default::default()
    }

    fn ipv6_flow_label(&mut self) -> u32 {
        0
    }

    fn can_gso(&self, segment_len: usize, _segment_count: usize) -> bool {
        segment_len >= self.1.as_ref().len()
    }

    fn write_payload(
        &mut self,
        mut buffer: PayloadBuffer,
        _gso_offset: usize,
    ) -> Result<usize, Error> {
        buffer.write(self.1.as_ref())
    }
}

impl<Handle: path::Handle, Payload: AsRef<[u8]>> Message
    for (Handle, ExplicitCongestionNotification, Payload)
{
    type Handle = Handle;

    fn path_handle(&self) -> &Self::Handle {
        &self.0
    }

    fn ecn(&mut self) -> ExplicitCongestionNotification {
        self.1
    }

    fn delay(&mut self) -> Duration {
        Default::default()
    }

    fn ipv6_flow_label(&mut self) -> u32 {
        0
    }

    fn can_gso(&self, segment_len: usize, _segment_count: usize) -> bool {
        segment_len >= self.2.as_ref().len()
    }

    fn write_payload(
        &mut self,
        mut buffer: PayloadBuffer,
        _gso_offset: usize,
    ) -> Result<usize, Error> {
        buffer.write(self.2.as_ref())
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::inet::SocketAddressV4;

    #[test]
    fn message_tuple_test() {
        let remote_address = SocketAddressV4::new([127, 0, 0, 1], 80).into();
        let local_address = SocketAddressV4::new([192, 168, 0, 1], 3000).into();
        let tuple = path::Tuple {
            remote_address,
            local_address,
        };
        let mut message = (tuple, [1u8, 2, 3]);

        let mut buffer = [0u8; 10];

        assert_eq!(*message.path_handle(), tuple);
        assert_eq!(message.ecn(), Default::default());
        assert_eq!(message.delay(), Default::default());
        assert_eq!(message.ipv6_flow_label(), 0);
        assert_eq!(
            message.write_payload(PayloadBuffer::new(&mut buffer[..]), 0),
            Ok(3)
        );
    }

    #[test]
    #[should_panic]
    fn message_tuple_undersized_test() {
        let remote_address = SocketAddressV4::new([127, 0, 0, 1], 80).into();
        let local_address = SocketAddressV4::new([192, 168, 0, 1], 3000).into();
        let tuple = path::Tuple {
            remote_address,
            local_address,
        };
        let mut message = (tuple, [1u8, 2, 3]);

        // assert an undersized buffer panics in debug
        let _ = message.write_payload(PayloadBuffer::new(&mut [][..]), 0);
    }
}