1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
use crate::{frame::Tag, inet::ExplicitCongestionNotification, number::CheckedSub, varint::VarInt};
use core::{
convert::TryInto,
ops::{RangeInclusive, SubAssign},
};
use s2n_codec::{
decoder_parameterized_value, decoder_value, DecoderBuffer, DecoderError, Encoder, EncoderValue,
};
//= https://www.rfc-editor.org/rfc/rfc9000#section-19.3
//# Receivers send ACK frames (types 0x02 and 0x03) to inform senders of
//# packets they have received and processed. The ACK frame contains one
//# or more ACK Ranges. ACK Ranges identify acknowledged packets. If
//# the frame type is 0x03, ACK frames also contain the cumulative count
//# of QUIC packets with associated ECN marks received on the connection
//# up until this point.
macro_rules! ack_tag {
() => {
0x02u8..=0x03u8
};
}
const ACK_TAG: u8 = 0x02;
const ACK_W_ECN_TAG: u8 = 0x03;
//= https://www.rfc-editor.org/rfc/rfc9000#section-19.3
//# ACK Frame {
//# Type (i) = 0x02..0x03,
//# Largest Acknowledged (i),
//# ACK Delay (i),
//# ACK Range Count (i),
//# First ACK Range (i),
//# ACK Range (..) ...,
//# [ECN Counts (..)],
//# }
//= https://www.rfc-editor.org/rfc/rfc9000#section-19.3
//# ACK frames contain the following fields:
//#
//# Largest Acknowledged: A variable-length integer representing the
//# largest packet number the peer is acknowledging; this is usually
//# the largest packet number that the peer has received prior to
//# generating the ACK frame. Unlike the packet number in the QUIC
//# long or short header, the value in an ACK frame is not truncated.
//#
//# ACK Delay: A variable-length integer encoding the acknowledgment
//# delay in microseconds; see Section 13.2.5. It is decoded by
//# multiplying the value in the field by 2 to the power of the
//# ack_delay_exponent transport parameter sent by the sender of the
//# ACK frame; see Section 18.2. Compared to simply expressing the
//# delay as an integer, this encoding allows for a larger range of
//# values within the same number of bytes, at the cost of lower
//# resolution.
//#
//# ACK Range Count: A variable-length integer specifying the number of
//# ACK Range fields in the frame.
//#
//# First ACK Range: A variable-length integer indicating the number of
//# contiguous packets preceding the Largest Acknowledged that are
//# being acknowledged. That is, the smallest packet acknowledged in
//# the range is determined by subtracting the First ACK Range value
//# from the Largest Acknowledged field.
//#
//# ACK Ranges: Contains additional ranges of packets that are
//# alternately not acknowledged (Gap) and acknowledged (ACK Range);
//# see Section 19.3.1.
//#
//# ECN Counts: The three ECN counts; see Section 19.3.2.
#[derive(Clone, PartialEq, Eq)]
pub struct Ack<AckRanges> {
/// A variable-length integer representing the time delta in microseconds
/// between when this ACK was sent and when the largest acknowledged
/// packet, as indicated in the Largest Acknowledged field, was
/// received by this peer
pub ack_delay: VarInt,
/// Contains additional ranges of packets which are alternately not
/// acknowledged (Gap) and acknowledged (ACK Range)
pub ack_ranges: AckRanges,
/// ECN Counts
pub ecn_counts: Option<EcnCounts>,
}
impl<AckRanges> Ack<AckRanges> {
pub fn tag(&self) -> u8 {
if self.ecn_counts.is_some() {
ACK_W_ECN_TAG
} else {
ACK_TAG
}
}
}
impl<A: AckRanges> Ack<A> {
pub fn ack_delay(&self) -> core::time::Duration {
core::time::Duration::from_micros(self.ack_delay.as_u64())
}
pub fn ack_ranges(&self) -> A::Iter {
self.ack_ranges.ack_ranges()
}
pub fn largest_acknowledged(&self) -> VarInt {
self.ack_ranges.largest_acknowledged()
}
}
impl<A: core::fmt::Debug> core::fmt::Debug for Ack<A> {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
f.debug_struct("Ack")
.field("ack_delay", &self.ack_delay)
.field("ack_ranges", &self.ack_ranges)
.field("ecn_counts", &self.ecn_counts)
.finish()
}
}
decoder_parameterized_value!(
impl<'a> Ack<AckRangesDecoder<'a>> {
fn decode(tag: Tag, buffer: Buffer) -> Result<Self> {
let (largest_acknowledged, buffer) = buffer.decode()?;
let (ack_delay, buffer) = buffer.decode()?;
let (ack_ranges, buffer) = buffer.decode_parameterized(largest_acknowledged)?;
let (ecn_counts, buffer) = if tag == ACK_W_ECN_TAG {
let (ecn_counts, buffer) = buffer.decode()?;
(Some(ecn_counts), buffer)
} else {
(None, buffer)
};
let frame = Ack {
ack_delay,
ack_ranges,
ecn_counts,
};
Ok((frame, buffer))
}
}
);
impl<A: AckRanges> EncoderValue for Ack<A> {
fn encode<E: Encoder>(&self, buffer: &mut E) {
buffer.encode(&self.tag());
let mut iter = self.ack_ranges.ack_ranges();
let first_ack_range = iter.next().expect("at least one ack range is required");
let (mut smallest, largest_acknowledged) = first_ack_range.into_inner();
let first_ack_range = largest_acknowledged - smallest;
let ack_range_count: VarInt = iter
.len()
.try_into()
.expect("ack range count cannot exceed VarInt::MAX");
buffer.encode(&largest_acknowledged);
buffer.encode(&self.ack_delay);
buffer.encode(&ack_range_count);
buffer.encode(&first_ack_range);
for range in iter {
smallest = encode_ack_range(range, smallest, buffer);
}
if let Some(ecn_counts) = self.ecn_counts.as_ref() {
buffer.encode(ecn_counts);
}
}
}
//= https://www.rfc-editor.org/rfc/rfc9000#section-19.3.1
//# Each ACK Range consists of alternating Gap and ACK Range Length
//# values in descending packet number order. ACK Ranges can be
//# repeated. The number of Gap and ACK Range Length values is
//# determined by the ACK Range Count field; one of each value is present
//# for each value in the ACK Range Count field.
pub trait AckRanges {
type Iter: Iterator<Item = RangeInclusive<VarInt>> + ExactSizeIterator;
fn ack_ranges(&self) -> Self::Iter;
fn largest_acknowledged(&self) -> VarInt {
*self
.ack_ranges()
.next()
.expect("at least one ack range is required")
.end()
}
}
#[derive(Clone, Copy)]
pub struct AckRangesDecoder<'a> {
largest_acknowledged: VarInt,
ack_range_count: VarInt,
range_buffer: DecoderBuffer<'a>,
}
impl<'a> AckRanges for AckRangesDecoder<'a> {
type Iter = AckRangesIter<'a>;
fn ack_ranges(&self) -> Self::Iter {
AckRangesIter {
largest_acknowledged: self.largest_acknowledged,
ack_range_count: self.ack_range_count,
range_buffer: self.range_buffer,
}
}
fn largest_acknowledged(&self) -> VarInt {
self.largest_acknowledged
}
}
impl<'a> PartialEq for AckRangesDecoder<'a> {
fn eq(&self, other: &Self) -> bool {
self.ack_ranges().eq(other.ack_ranges())
}
}
impl<'a> core::fmt::Debug for AckRangesDecoder<'a> {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
core::fmt::Debug::fmt(&self.ack_ranges(), f)
}
}
//= https://www.rfc-editor.org/rfc/rfc9000#section-19.3.1
//# Each ACK Range consists of alternating Gap and ACK Range Length
//# values in descending packet number order. ACK Ranges can be
//# repeated. The number of Gap and ACK Range Length values is
//# determined by the ACK Range Count field; one of each value is present
//# for each value in the ACK Range Count field.
//= https://www.rfc-editor.org/rfc/rfc9000#section-19.3.1
//# ACK Range {
//# Gap (i),
//# ACK Range Length (i),
//# }
//= https://www.rfc-editor.org/rfc/rfc9000#section-19.3.1
//# The fields that form each ACK Range are:
//#
//# Gap: A variable-length integer indicating the number of contiguous
//# unacknowledged packets preceding the packet number one lower than
//# the smallest in the preceding ACK Range.
//#
//# ACK Range Length: A variable-length integer indicating the number of
//# contiguous acknowledged packets preceding the largest packet
//# number, as determined by the preceding Gap.
//#
//# Gap and ACK Range Length values use a relative integer encoding for
//# efficiency. Though each encoded value is positive, the values are
//# subtracted, so that each ACK Range describes progressively lower-
//# numbered packets.
//#
//# Each ACK Range acknowledges a contiguous range of packets by
//# indicating the number of acknowledged packets that precede the
//# largest packet number in that range. A value of 0 indicates that
//# only the largest packet number is acknowledged. Larger ACK Range
//# values indicate a larger range, with corresponding lower values for
//# the smallest packet number in the range. Thus, given a largest
//# packet number for the range, the smallest value is determined by the
//# following formula:
//
// smallest = largest - ack_range
decoder_parameterized_value!(
impl<'a> AckRangesDecoder<'a> {
fn decode(largest_acknowledged: VarInt, buffer: Buffer) -> Result<AckRangesDecoder> {
let (mut ack_range_count, buffer) = buffer.decode::<VarInt>()?;
// add one to the total, which includes the first ack range
ack_range_count = ack_range_count
.checked_add(VarInt::from_u8(1))
.ok_or(ACK_RANGE_DECODING_ERROR)?;
let mut iter = AckRangesIter {
ack_range_count,
range_buffer: buffer.peek(),
largest_acknowledged,
};
// make sure we can decode all of the range/gap pairs
for _ in 0..*ack_range_count {
iter.next().ok_or(ACK_RANGE_DECODING_ERROR)?;
}
let peek_len = iter.range_buffer.len();
let buffer_len = buffer.len();
debug_assert!(
buffer_len >= peek_len,
"peeked buffer should never consume more than actual buffer"
);
let (range_buffer, remaining) = buffer.decode_slice(buffer_len - peek_len)?;
#[allow(clippy::useless_conversion)]
let range_buffer = range_buffer.into();
let ack_ranges = AckRangesDecoder {
largest_acknowledged,
ack_range_count,
range_buffer,
};
Ok((ack_ranges, remaining))
}
}
);
//= https://www.rfc-editor.org/rfc/rfc9000#section-19.3.1
//# An ACK Range acknowledges all packets between the smallest packet
//# number and the largest, inclusive.
//#
//# The largest value for an ACK Range is determined by cumulatively
//# subtracting the size of all preceding ACK Range Lengths and Gaps.
//#
//# Each Gap indicates a range of packets that are not being
//# acknowledged. The number of packets in the gap is one higher than
//# the encoded value of the Gap field.
//#
//# The value of the Gap field establishes the largest packet number
//# value for the subsequent ACK Range using the following formula:
//#
//# largest = previous_smallest - gap - 2
fn encode_ack_range<E: Encoder>(
range: RangeInclusive<VarInt>,
smallest: VarInt,
buffer: &mut E,
) -> VarInt {
let (start, end) = range.into_inner();
let gap = smallest - end - 2;
let ack_range = end - start;
buffer.encode(&gap);
buffer.encode(&ack_range);
start
}
#[derive(Clone, Copy)]
pub struct AckRangesIter<'a> {
largest_acknowledged: VarInt,
ack_range_count: VarInt,
range_buffer: DecoderBuffer<'a>,
}
impl<'a> Iterator for AckRangesIter<'a> {
type Item = RangeInclusive<VarInt>;
fn next(&mut self) -> Option<Self::Item> {
self.ack_range_count = self.ack_range_count.checked_sub(VarInt::from_u8(1))?;
let largest_acknowledged = self.largest_acknowledged;
let (ack_range, buffer) = self.range_buffer.decode::<VarInt>().ok()?;
let start = largest_acknowledged.checked_sub(ack_range)?;
let end = largest_acknowledged;
// If we're not on the last range, try to decode the next gap
self.range_buffer = if self.ack_range_count != VarInt::from_u8(0) {
let (gap, buffer) = buffer.decode::<VarInt>().ok()?;
self.largest_acknowledged = largest_acknowledged
.checked_sub(ack_range)?
.checked_sub(gap)?
.checked_sub(VarInt::from_u8(2))?;
buffer
} else {
buffer
};
Some(start..=end)
}
fn size_hint(&self) -> (usize, Option<usize>) {
let ack_range_count = *self.ack_range_count as usize;
(ack_range_count, Some(ack_range_count))
}
}
impl<'a> ExactSizeIterator for AckRangesIter<'a> {}
impl<'a> core::fmt::Debug for AckRangesIter<'a> {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
f.debug_list().entries(*self).finish()
}
}
//= https://www.rfc-editor.org/rfc/rfc9000#section-19.3.1
//# If any computed packet number is negative, an endpoint MUST generate
//# a connection error of type FRAME_ENCODING_ERROR.
const ACK_RANGE_DECODING_ERROR: DecoderError =
DecoderError::InvariantViolation("invalid ACK ranges");
//= https://www.rfc-editor.org/rfc/rfc9000#section-19.3.2
//# The ACK frame uses the least significant bit of the type value (that
//# is, type 0x03) to indicate ECN feedback and report receipt of QUIC
//# packets with associated ECN codepoints of ECT(0), ECT(1), or ECN-CE
//# in the packet's IP header. ECN counts are only present when the ACK
//# frame type is 0x03.
//= https://www.rfc-editor.org/rfc/rfc9000#section-19.3.2
//# ECN Counts {
//# ECT0 Count (i),
//# ECT1 Count (i),
//# ECN-CE Count (i),
//# }
//= https://www.rfc-editor.org/rfc/rfc9000#section-19.3.2
//# The ECN count fields are:
//#
//# ECT0 Count: A variable-length integer representing the total number
//# of packets received with the ECT(0) codepoint in the packet number
//# space of the ACK frame.
//#
//# ECT1 Count: A variable-length integer representing the total number
//# of packets received with the ECT(1) codepoint in the packet number
//# space of the ACK frame.
//#
//# ECN-CE Count: A variable-length integer representing the total
//# number of packets received with the ECN-CE codepoint in the packet
//# number space of the ACK frame.
//#
//# ECN counts are maintained separately for each packet number space.
#[cfg(feature = "generator")]
use bolero_generator::*;
#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
#[cfg_attr(feature = "generator", derive(TypeGenerator))]
pub struct EcnCounts {
/// A variable-length integer representing the total number of packets
/// received with the ECT(0) codepoint.
pub ect_0_count: VarInt,
/// A variable-length integer representing the total number of packets
/// received with the ECT(1) codepoint.
pub ect_1_count: VarInt,
/// A variable-length integer representing the total number of packets
/// received with the CE codepoint.
pub ce_count: VarInt,
}
impl EcnCounts {
/// Increment the count for the given `ExplicitCongestionNotification`
pub fn increment(&mut self, ecn: ExplicitCongestionNotification) {
match ecn {
ExplicitCongestionNotification::Ect0 => {
self.ect_0_count = self.ect_0_count.saturating_add(VarInt::from_u8(1))
}
ExplicitCongestionNotification::Ect1 => {
self.ect_1_count = self.ect_1_count.saturating_add(VarInt::from_u8(1))
}
ExplicitCongestionNotification::Ce => {
self.ce_count = self.ce_count.saturating_add(VarInt::from_u8(1))
}
ExplicitCongestionNotification::NotEct => {}
}
}
/// Gets the `EcnCounts` as an Option that will be `None` if none of the `EcnCounts` have
/// been incremented.
pub fn as_option(&self) -> Option<EcnCounts> {
if *self == Default::default() {
return None;
}
Some(*self)
}
/// Return `EcnCounts` containing the maximum of each individual ECN count
#[must_use]
pub fn max(self, other: Self) -> Self {
EcnCounts {
ect_0_count: self.ect_0_count.max(other.ect_0_count),
ect_1_count: self.ect_1_count.max(other.ect_1_count),
ce_count: self.ce_count.max(other.ce_count),
}
}
}
impl SubAssign for EcnCounts {
fn sub_assign(&mut self, rhs: Self) {
self.ect_0_count = self.ect_0_count.saturating_sub(rhs.ect_0_count);
self.ect_1_count = self.ect_1_count.saturating_sub(rhs.ect_1_count);
self.ce_count = self.ce_count.saturating_sub(rhs.ce_count);
}
}
impl CheckedSub for EcnCounts {
type Output = EcnCounts;
fn checked_sub(self, rhs: Self) -> Option<Self::Output> {
let ect_0_count = self.ect_0_count.checked_sub(rhs.ect_0_count)?;
let ect_1_count = self.ect_1_count.checked_sub(rhs.ect_1_count)?;
let ce_count = self.ce_count.checked_sub(rhs.ce_count)?;
Some(EcnCounts {
ect_0_count,
ect_1_count,
ce_count,
})
}
}
decoder_value!(
impl<'a> EcnCounts {
fn decode(buffer: Buffer) -> Result<Self> {
let (ect_0_count, buffer) = buffer.decode()?;
let (ect_1_count, buffer) = buffer.decode()?;
let (ce_count, buffer) = buffer.decode()?;
let ecn_counts = Self {
ect_0_count,
ect_1_count,
ce_count,
};
Ok((ecn_counts, buffer))
}
}
);
impl EncoderValue for EcnCounts {
fn encode<E: Encoder>(&self, buffer: &mut E) {
buffer.encode(&self.ect_0_count);
buffer.encode(&self.ect_1_count);
buffer.encode(&self.ce_count);
}
}
#[cfg(test)]
mod tests {
use crate::{frame::ack::EcnCounts, inet::ExplicitCongestionNotification};
#[test]
fn as_option() {
let mut ecn_counts = EcnCounts::default();
assert_eq!(None, ecn_counts.as_option());
ecn_counts.increment(ExplicitCongestionNotification::Ect0);
assert!(ecn_counts.as_option().is_some());
let mut ecn_counts = EcnCounts::default();
ecn_counts.increment(ExplicitCongestionNotification::Ect1);
assert!(ecn_counts.as_option().is_some());
let mut ecn_counts = EcnCounts::default();
ecn_counts.increment(ExplicitCongestionNotification::Ce);
assert!(ecn_counts.as_option().is_some());
}
}