1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

use crate::{
    random,
    recovery::{
        bbr::{startup, BbrCongestionController, State},
        congestion_controller::Publisher,
    },
    time::Timestamp,
};
use num_rational::Ratio;
use num_traits::One;

//= https://tools.ietf.org/id/draft-cardwell-iccrg-bbr-congestion-control-02#4.3.2
//# In Drain, BBR aims to quickly drain any queue created in Startup by switching to a
//# pacing_gain well below 1.0, until any estimated queue has been drained. It uses a
//# pacing_gain that is the inverse of the value used during Startup, chosen to try to
//# drain the queue in one round

// The wording above is somewhat ambiguous over whether the drain pacing_gain should be
// the inverse of the startup pacing_gain or startup cwnd_gain. However, the citation below
// makes it clear it is the inverse of the startup cwnd_gain. This is also supported
// by the following derivation:
// https://github.com/google/bbr/blob/master/Documentation/startup/gain/analysis/bbr_drain_gain.pdf

//= https://tools.ietf.org/id/draft-cardwell-iccrg-bbr-congestion-control-02#4.3.2
//#     BBR.pacing_gain = 1/BBRStartupCwndGain  /* pace slowly */
pub(crate) const PACING_GAIN: Ratio<u64> = Ratio::new_raw(1, 2);

//= https://tools.ietf.org/id/draft-cardwell-iccrg-bbr-congestion-control-02#4.3.2
//# BBREnterDrain():
//#     BBR.state = Drain
//#     BBR.pacing_gain = 1/BBRStartupCwndGain  /* pace slowly */
//#     BBR.cwnd_gain = BBRStartupCwndGain      /* maintain cwnd */
pub(crate) const CWND_GAIN: Ratio<u64> = startup::CWND_GAIN;

/// Methods related to the Drain state
impl BbrCongestionController {
    /// Enter the `Drain` state
    #[inline]
    pub(super) fn enter_drain<Pub: Publisher>(&mut self, publisher: &mut Pub) {
        //= https://tools.ietf.org/id/draft-cardwell-iccrg-bbr-congestion-control-02#4.3.2
        //# BBREnterDrain():
        //#   BBR.state = Drain
        //#   BBR.pacing_gain = 1/BBRStartupCwndGain  /* pace slowly */
        //#   BBR.cwnd_gain = BBRStartupCwndGain      /* maintain cwnd */
        // pacing_gain and cwnd_gain are managed with the State enum

        // New BBR state requires updating the model
        self.try_fast_path = false;
        self.state.transition_to(State::Drain, publisher);
    }

    /// Checks if the `Drain` state is done and enters `ProbeBw` if so
    #[inline]
    pub(super) fn check_drain_done<Pub: Publisher>(
        &mut self,
        random_generator: &mut dyn random::Generator,
        now: Timestamp,
        publisher: &mut Pub,
    ) {
        //= https://tools.ietf.org/id/draft-cardwell-iccrg-bbr-congestion-control-02#4.3.2
        //# BBRCheckDrain():
        //#   if (BBR.state == Drain and packets_in_flight <= BBRInflight(1.0))
        //#     BBREnterProbeBW()  /* BBR estimates the queue was drained */
        if self.state.is_drain()
            && self.bytes_in_flight <= self.inflight(self.data_rate_model.bw(), Ratio::one())
        {
            self.enter_probe_bw(false, random_generator, now, publisher);
        }
    }
}

#[cfg(test)]
mod tests {
    use crate::{
        counter::Counter,
        event, path,
        path::MINIMUM_MTU,
        random,
        recovery::{
            bandwidth::RateSample, bbr::BbrCongestionController,
            congestion_controller::PathPublisher,
        },
        time::{Clock, NoopClock},
    };
    use core::time::Duration;

    #[test]
    fn enter_drain() {
        let mut bbr = BbrCongestionController::new(MINIMUM_MTU);
        let mut publisher = event::testing::Publisher::snapshot();
        let mut publisher = PathPublisher::new(&mut publisher, path::Id::test_id());

        bbr.enter_drain(&mut publisher);

        assert!(bbr.state.is_drain());
        assert!(!bbr.try_fast_path);
    }

    //= https://tools.ietf.org/id/draft-cardwell-iccrg-bbr-congestion-control-02#4.3.2
    //= type=test
    //# BBRCheckDrain():
    //#   if (BBR.state == Drain and packets_in_flight <= BBRInflight(1.0))
    //#     BBREnterProbeBW()  /* BBR estimates the queue was drained */
    #[test]
    fn check_drain_done() {
        let mut bbr = BbrCongestionController::new(MINIMUM_MTU);
        let now = NoopClock.get_time();
        let mut rng = random::testing::Generator::default();
        let mut publisher = event::testing::Publisher::snapshot();
        let mut publisher = PathPublisher::new(&mut publisher, path::Id::test_id());

        // Not in drain yet
        bbr.check_drain_done(&mut rng, now, &mut publisher);
        assert!(bbr.state.is_startup());

        bbr.enter_drain(&mut publisher);
        bbr.bytes_in_flight = Counter::new(100);

        // bytes_in_flight > inflight
        bbr.check_drain_done(&mut rng, now, &mut publisher);
        assert!(!bbr.state.is_drain());

        let rate_sample = RateSample {
            delivered_bytes: 100_000,
            interval: Duration::from_millis(1),
            ..Default::default()
        };
        bbr.data_rate_model.update_max_bw(rate_sample);
        bbr.data_rate_model.bound_bw_for_model();

        // Now drain is done
        bbr.check_drain_done(&mut rng, now, &mut publisher);
        assert!(bbr.state.is_probing_bw());
    }
}