1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
use crate::{
recovery::{
bandwidth::Bandwidth,
bbr::{
ecn::ECN_FACTOR,
windowed_filter::{MinRttWindowedFilter, WindowedMaxFilter},
BETA,
},
},
time::Timestamp,
};
use core::time::Duration;
//= https://tools.ietf.org/id/draft-cardwell-iccrg-bbr-congestion-control-02#2.9.2
//# The data volume model parameters together estimate both the volume of in-flight data required to
//# reach the full bandwidth available to the flow (BBR.max_inflight), and the maximum volume of
//# data that is consistent with the queue pressure objective (cwnd).
#[derive(Clone, Debug)]
pub(crate) struct Model {
//= https://tools.ietf.org/id/draft-cardwell-iccrg-bbr-congestion-control-02#2.9.2
//# The windowed minimum round-trip time sample measured over the last MinRTTFilterLen = 10 seconds.
min_rtt_filter: MinRttWindowedFilter,
//= https://tools.ietf.org/id/draft-cardwell-iccrg-bbr-congestion-control-02#2.9.2
//# A volume of data that is the estimate of the recent degree of aggregation in the network path.
extra_acked_filter: WindowedMaxFilter<u64, u64, u64>,
//= https://tools.ietf.org/id/draft-cardwell-iccrg-bbr-congestion-control-02#2.12
//# the start of the time interval for estimating the excess amount of data acknowledged due to aggregation effects.
extra_acked_interval_start: Option<Timestamp>,
//= https://tools.ietf.org/id/draft-cardwell-iccrg-bbr-congestion-control-02#2.12
//# the volume of data marked as delivered since BBR.extra_acked_interval_start.
extra_acked_delivered: u64,
//= https://tools.ietf.org/id/draft-cardwell-iccrg-bbr-congestion-control-02#2.9.2
//# Analogous to BBR.bw_hi, the long-term maximum volume of in-flight data that the algorithm
//# estimates will produce acceptable queue pressure, based on signals in the current or
//# previous bandwidth probing cycle, as measured by loss.
inflight_hi: u64,
//= https://tools.ietf.org/id/draft-cardwell-iccrg-bbr-congestion-control-02#2.9.2
//# Analogous to BBR.bw_lo, the short-term maximum volume of in-flight data that the algorithm
//# estimates is safe for matching the current network path delivery process, based on any loss
//# signals in the current bandwidth probing cycle.
inflight_lo: u64,
}
impl Model {
/// Constructs a new `data_volume::Model`
pub fn new() -> Self {
//= https://tools.ietf.org/id/draft-cardwell-iccrg-bbr-congestion-control-02#2.12
//# The window length of the BBR.ExtraACKedFilter max filter window:
//# 10 (in units of packet-timed round trips).
const EXTRA_ACKED_FILTER_LEN: u64 = 10;
Self {
min_rtt_filter: MinRttWindowedFilter::new(),
extra_acked_filter: WindowedMaxFilter::new(EXTRA_ACKED_FILTER_LEN),
extra_acked_interval_start: None,
extra_acked_delivered: 0,
inflight_hi: u64::MAX,
inflight_lo: u64::MAX,
}
}
/// The windowed maximum recent estimate in bytes of the degree of aggregation in the path
pub fn extra_acked(&self) -> u64 {
self.extra_acked_filter.value().unwrap_or(0)
}
/// The windowed minimum round trip time
pub fn min_rtt(&self) -> Option<Duration> {
self.min_rtt_filter.min_rtt()
}
/// The long-term maximum volume of in-flight data that the algorithm
/// estimates will produce acceptable queue pressure
pub fn inflight_hi(&self) -> u64 {
self.inflight_hi
}
/// The short-term maximum volume of in-flight data that the algorithm
/// estimates is safe for matching the current network path delivery process
pub fn inflight_lo(&self) -> u64 {
self.inflight_lo
}
/// True if the probe RTT has expired and is due for a refresh by entering the ProbeRTT state
pub fn probe_rtt_expired(&self) -> bool {
self.min_rtt_filter.probe_rtt_expired()
}
/// Overrides the last updated time for Min Probe RTT to ensure ProbeRTT is not entered until
/// the next PROBE_RTT_INTERVAL.
///
/// Called immediately after ProbeRTT period ends or after resuming from idle
pub fn schedule_next_probe_rtt(&mut self, now: Timestamp) {
self.min_rtt_filter.schedule_next_probe_rtt(now)
}
/// Update the min_rtt estimate with the given `rtt`
pub fn update_min_rtt(&mut self, rtt: Duration, now: Timestamp) {
self.min_rtt_filter.update(rtt, now)
}
/// Update the ack aggregation estimate
pub fn update_ack_aggregation(
&mut self,
bw: Bandwidth,
bytes_acknowledged: usize,
cwnd: u32,
round_count: u64,
now: Timestamp,
) {
//= https://tools.ietf.org/id/draft-cardwell-iccrg-bbr-congestion-control-02#4.5.5
//# BBRUpdateACKAggregation():
//# /* Find excess ACKed beyond expected amount over this interval */
//# interval = (Now() - BBR.extra_acked_interval_start)
//# expected_delivered = BBR.bw * interval
//# /* Reset interval if ACK rate is below expected rate: */
//# if (BBR.extra_acked_delivered <= expected_delivered)
//# BBR.extra_acked_delivered = 0
//# BBR.extra_acked_interval_start = Now()
//# expected_delivered = 0
//# BBR.extra_acked_delivered += rs.newly_acked
//# extra = BBR.extra_acked_delivered - expected_delivered
//# extra = min(extra, cwnd)
//# BBR.extra_acked =
//# update_windowed_max_filter(
//# filter=BBR.ExtraACKedFilter,
//# value=extra,
//# time=BBR.round_count,
//# window_length=BBRExtraAckedFilterLen)
let mut expected_delivered = 0;
if let Some(extra_acked_interval_start) = self.extra_acked_interval_start {
// Find excess ACKed beyond expected amount over this interval
let interval = now - extra_acked_interval_start;
expected_delivered = bw * interval;
}
// Reset interval if ACK rate is below expected rate
if self.extra_acked_delivered <= expected_delivered
|| self.extra_acked_interval_start.is_none()
{
self.extra_acked_delivered = 0;
self.extra_acked_interval_start = Some(now);
expected_delivered = 0;
}
self.extra_acked_delivered += bytes_acknowledged as u64;
let extra = (self.extra_acked_delivered - expected_delivered).min(cwnd as u64);
self.extra_acked_filter.update(extra, round_count);
}
/// Updates `inflight_hi` with the given `inflight_hi`
pub fn update_upper_bound(&mut self, inflight_hi: u64) {
self.inflight_hi = inflight_hi;
}
/// Updates `inflight_lo` if there is loss or ECN in the round
pub fn update_lower_bound(
&mut self,
cwnd: u32,
inflight_latest: u64,
loss_in_round: bool,
ecn_in_round: bool,
ecn_alpha: f64,
) {
if !loss_in_round && !ecn_in_round {
return;
}
//= https://tools.ietf.org/id/draft-cardwell-iccrg-bbr-congestion-control-02#4.5.6.3
//# if (BBR.inflight_lo == Infinity)
//# BBR.inflight_lo = cwnd
if self.inflight_lo == u64::MAX {
self.inflight_lo = cwnd as u64;
}
// Update inflight_lo to the lower of the values determined when loss_in_round or ecn_in_round
// Based on https://github.com/google/bbr/blob/1a45fd4faf30229a3d3116de7bfe9d2f933d3562/net/ipv4/tcp_bbr2.c#L1618
let ecn_inflight_lo = if ecn_in_round {
((1.0 - (ecn_alpha * ECN_FACTOR)) * self.inflight_lo as f64) as u64
} else {
u64::MAX
};
let loss_inflight_lo = if loss_in_round {
//= https://tools.ietf.org/id/draft-cardwell-iccrg-bbr-congestion-control-02#4.5.6.3
//# BBR.inflight_lo = max(BBR.inflight_latest,
//# BBRBeta * BBR.infligh_lo)
inflight_latest.max((BETA * self.inflight_lo).to_integer())
} else {
u64::MAX
};
self.inflight_lo = loss_inflight_lo.min(ecn_inflight_lo);
}
/// Resets `inflight_lo` to its initial value
pub fn reset_lower_bound(&mut self) {
//= https://tools.ietf.org/id/draft-cardwell-iccrg-bbr-congestion-control-02#4.5.6.3
//# BBR.inflight_lo = Infinity
self.inflight_lo = u64::MAX
}
/// Sets the `extra_acked_interval_start` to the given `timestamp`
pub fn set_extra_acked_interval_start(&mut self, timestamp: Timestamp) {
self.extra_acked_interval_start = Some(timestamp);
}
#[cfg(test)]
pub fn set_extra_acked_for_test(&mut self, sample: u64, round_count: u64) {
self.extra_acked_filter.update(sample, round_count);
}
#[cfg(test)]
pub fn set_inflight_lo_for_test(&mut self, inflight_lo: u64) {
self.inflight_lo = inflight_lo;
}
#[cfg(test)]
pub fn extra_acked_interval_start(&self) -> Option<Timestamp> {
self.extra_acked_interval_start
}
#[cfg(test)]
pub fn next_probe_rtt(&self) -> Option<Timestamp> {
self.min_rtt_filter.next_probe_rtt()
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::time::{Clock, NoopClock};
#[test]
fn new() {
let model = Model::new();
assert_eq!(0, model.extra_acked());
assert_eq!(None, model.min_rtt());
assert_eq!(u64::MAX, model.inflight_hi());
assert_eq!(u64::MAX, model.inflight_lo());
}
#[test]
fn update_ack_aggregation() {
let now = NoopClock.get_time();
let mut model = Model::new();
let now = now + Duration::from_millis(200);
let bw = Bandwidth::new(1500, Duration::from_secs(1));
// The first call to update_ack_aggregation starts a new ack aggregation epoch
model.update_ack_aggregation(bw, 1600, 12000, 0, now);
assert_eq!(1600, model.extra_acked());
assert_eq!(Some(now), model.extra_acked_interval_start);
assert_eq!(1600, model.extra_acked_delivered);
let now = now + Duration::from_secs(1);
model.update_ack_aggregation(bw, 1600, 12000, 1, now);
// The BW sample indicates 1500 bytes should be ACKed over the interval, but instead 1600 were,
// meaning the extra acked amount is 100 bytes. This is added to the initial 1600 extra acked
// amount to arrive at 1700 bytes.
assert_eq!(1700, model.extra_acked());
let now = now + Duration::from_secs(1);
// Even more extra data is acked, but since the cwnd is lower than the extra amount, that
// value is used as the extra acked (1600 bytes). 1700 remains the max extra acked.
model.update_ack_aggregation(bw, 1700, 1600, 2, now);
assert_eq!(1700, model.extra_acked());
}
#[test]
fn update_lower_bound() {
let mut model = Model::new();
model.update_lower_bound(1000, 100, true, false, 1.0);
// We didn't have a valid inflight_lo value yet, and the given inflight_latest is lower than cwnd * BETA,
// so inflight_lo is set to cwnd * BETA
assert_eq!((BETA * 1000).to_integer(), model.inflight_lo());
let inflight_latest = 1500;
model.update_lower_bound(1000, inflight_latest, true, false, 1.0);
// The new sample is higher than inflight_lo, so update inflight_lo
assert_eq!(inflight_latest, model.inflight_lo());
let ecn_alpha = 4.0 / 5.0;
model.update_lower_bound(1000, inflight_latest, false, true, ecn_alpha);
// There was ecn_in_round, so lower inflight_lo according to ecn_alpha
// (1 - 4/5 * .33) * 1500 = 1104
assert_eq!(1104, model.inflight_lo());
// Resetting the lower bound sets inflight_lo to u64::MAX
model.reset_lower_bound();
assert_eq!(u64::MAX, model.inflight_lo());
// There is both ECN and Loss in the round, but the Loss reduced value is lower, so use the Loss value
model.update_lower_bound(1500, 100, true, true, ecn_alpha);
assert_eq!(1050, model.inflight_lo());
model.reset_lower_bound();
// There is both ECN and Loss in the round, but the Loss reduced value is higher, so use the ECN value
model.update_lower_bound(1500, 1200, true, true, ecn_alpha);
assert_eq!(1104, model.inflight_lo());
}
}