s2json_core/geometry/
vector_point.rs

1use core::{
2    cmp::Ordering,
3    f64::consts::PI,
4    fmt::Debug,
5    ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign},
6};
7use libm::{atan, atan2, fabs, fmod, log, sin, sinh, sqrt};
8use serde::{Deserialize, Serialize};
9
10/// Importing necessary types (equivalent to importing from 'values')
11use crate::*;
12
13/// A Vector Point uses a structure for 2D or 3D points
14#[derive(Serialize, Deserialize, Debug, Clone, Default)]
15#[repr(C)]
16pub struct VectorPoint<M: Clone = MValue> {
17    /// X coordinate
18    pub x: f64,
19    /// Y coordinate
20    pub y: f64,
21    /// Z coordinate or "altitude". May be None
22    pub z: Option<f64>,
23    /// M-Value
24    #[serde(skip_serializing_if = "Option::is_none")]
25    pub m: Option<M>,
26    /// T for tolerance. A tmp value used for simplification
27    #[serde(skip)]
28    pub t: Option<f64>,
29}
30impl VectorPoint<MValue> {
31    /// Helper function for tests. Create a new point quickly from an xy coordinate
32    pub fn from_xy(x: f64, y: f64) -> Self {
33        Self { x, y, z: None, m: None, t: None }
34    }
35
36    /// Helper function for tests. Create a new point quickly from an xyz coordinate
37    pub fn from_xyz(x: f64, y: f64, z: f64) -> Self {
38        Self { x, y, z: Some(z), m: None, t: None }
39    }
40}
41impl<M: Clone> VectorPoint<M> {
42    /// Create a new point
43    pub fn new(x: f64, y: f64, z: Option<f64>, m: Option<M>) -> Self {
44        Self { x, y, z, m, t: None }
45    }
46
47    /// Create a new point with xy
48    pub fn new_xy(x: f64, y: f64, m: Option<M>) -> Self {
49        Self { x, y, z: None, m, t: None }
50    }
51
52    /// Create a new point with xyz
53    pub fn new_xyz(x: f64, y: f64, z: f64, m: Option<M>) -> Self {
54        Self { x, y, z: Some(z), m, t: None }
55    }
56
57    /// Project the point into the 0->1 coordinate system
58    pub fn project(&mut self, bbox: Option<&mut BBox3D>) {
59        let y = self.y;
60        let x = self.x;
61        let sin = sin((y * PI) / 180.);
62        let y2 = 0.5 - (0.25 * log((1. + sin) / (1. - sin))) / PI;
63        self.x = x / 360. + 0.5;
64        self.y = y2.clamp(0., 1.);
65
66        if let Some(bbox) = bbox {
67            bbox.extend_from_point(self)
68        };
69    }
70
71    /// Unproject the point from the 0->1 coordinate system back to a lon-lat coordinate
72    pub fn unproject(&mut self) {
73        let lon = (self.x - 0.5) * 360.;
74        let y2 = 0.5 - self.y;
75        let lat = atan(sinh(PI * (y2 * 2.))).to_degrees();
76
77        self.x = lon;
78        self.y = lat;
79    }
80
81    /// Returns true if the point is the zero vector.
82    pub fn is_empty(&self) -> bool {
83        let zero = f64::default();
84        self.x == zero && self.y == zero && (self.z.is_none() || self.z.unwrap() == zero)
85    }
86
87    /// Returns the S2 face assocated with this point
88    pub fn face(&self, f: u8) -> f64 {
89        if f == 0 {
90            self.x
91        } else if f == 1 {
92            self.y
93        } else {
94            self.z.unwrap_or(0.)
95        }
96    }
97
98    /// Apply modular arithmetic to x, y, and z using `modulus`
99    pub fn modulo(self, modulus: f64) -> Self {
100        let modulus = fabs(modulus); // Ensure positive modulus
101        Self {
102            x: fmod(self.x, modulus),
103            y: fmod(self.y, modulus),
104            z: self.z.map(|z| fmod(z, modulus)),
105            m: self.m,
106            t: None,
107        }
108    }
109
110    /// Returns the angle between "this" and v in radians, in the range [0, pi]. If
111    /// either vector is zero-length, or nearly zero-length, the result will be
112    /// zero, regardless of the other value.
113    pub fn angle<M2: Clone>(&self, b: &VectorPoint<M2>) -> f64 {
114        atan2(self.cross(b).norm(), self.dot(b))
115    }
116
117    /// Get the cross product of two Vector Points
118    pub fn cross<M2: Clone>(&self, b: &VectorPoint<M2>) -> Self {
119        if let (Some(z), Some(bz)) = (self.z, b.z) {
120            Self::new_xyz(
121                self.y * bz - z * b.y,
122                z * b.x - self.x * bz,
123                self.x * b.y - self.y * b.x,
124                None,
125            )
126        } else {
127            Self::new_xy(self.x * b.y - self.y * b.x, self.y * b.x - self.x * b.y, None)
128        }
129    }
130
131    /// dot returns the standard dot product of v and ov.
132    pub fn dot<M2: Clone>(&self, b: &VectorPoint<M2>) -> f64 {
133        if let (Some(z), Some(bz)) = (self.z, b.z) {
134            self.x * b.x + self.y * b.y + z * bz
135        } else {
136            self.x * b.x + self.y * b.y
137        }
138    }
139
140    /// Returns the absolute value of the point.
141    pub fn abs(&self) -> Self {
142        Self::new(fabs(self.x), fabs(self.y), self.z.map(fabs), None)
143    }
144
145    /// Returns the inverse of the point
146    pub fn invert(&self) -> Self {
147        -self
148    }
149
150    /// Returns the length of the point.
151    pub fn len(&self) -> f64 {
152        self.norm()
153    }
154
155    /// norm returns the vector's norm.
156    pub fn norm(&self) -> f64 {
157        sqrt(self.norm2())
158    }
159
160    /// norm2 returns the vector's squared norm.
161    pub fn norm2(&self) -> f64 {
162        self.dot(self)
163    }
164
165    /// Normalize this point to unit length.
166    pub fn normalize(&mut self) {
167        let len = self.len();
168        if len > 0.0 {
169            self.x /= len;
170            self.y /= len;
171            if let Some(z) = self.z {
172                self.z = Some(z / len);
173            }
174        }
175    }
176
177    /// return the distance from this point to the other point in radians
178    pub fn distance<M2: Clone>(&self, b: &VectorPoint<M2>) -> f64 {
179        let d: VectorPoint<M> = self - b;
180        d.len()
181    }
182
183    /// Returns the largest absolute component of the point.
184    pub fn largest_abs_component(&self) -> u8 {
185        let tmp = self.abs();
186        let tmp_z = tmp.z.unwrap_or(-2.);
187        if tmp.x > tmp.y {
188            if tmp.x > tmp_z {
189                0
190            } else {
191                2
192            }
193        } else if tmp.y > tmp_z {
194            1
195        } else {
196            2
197        }
198    }
199
200    /// Returns the intermediate point between this and the other point.
201    pub fn intermediate<M2: Clone>(&self, b: &VectorPoint<M2>, t: f64) -> Self {
202        if let (Some(z), Some(bz)) = (self.z, b.z) {
203            Self::new_xyz(
204                self.x + ((b.x - self.x) * (1.0 - t)),
205                self.y + ((b.y - self.y) * (1.0 - t)),
206                z + ((bz - z) * (1.0 - t)),
207                None,
208            )
209        } else {
210            Self::new_xy(
211                self.x + ((b.x - self.x) * (1.0 - t)),
212                self.y + ((b.y - self.y) * (1.0 - t)),
213                None,
214            )
215        }
216    }
217
218    /// Returns the perpendicular vector
219    pub fn perpendicular(&self) -> Self {
220        if let Some(z) = self.z {
221            let ref_point = if fabs(self.x) > fabs(z) {
222                Self::new_xyz(0., 0., 1., None)
223            } else {
224                Self::new_xyz(1., 0., 0., None)
225            };
226            let cross = self.cross(&ref_point);
227            Self::new_xyz(-self.y, self.x, cross.z.unwrap(), None)
228        } else {
229            Self::new_xy(-self.y, self.x, None)
230        }
231    }
232}
233impl<M: Clone> From<Point> for VectorPoint<M> {
234    fn from(p: Point) -> Self {
235        Self { x: p.0, y: p.1, z: None, m: None, t: None }
236    }
237}
238impl<M: Clone> From<&Point> for VectorPoint<M> {
239    fn from(p: &Point) -> Self {
240        Self { x: p.0, y: p.1, z: None, m: None, t: None }
241    }
242}
243impl<M: Clone> From<Point3D> for VectorPoint<M> {
244    fn from(p: Point3D) -> Self {
245        Self { x: p.0, y: p.1, z: Some(p.2), m: None, t: None }
246    }
247}
248impl<M: Clone> From<&Point3D> for VectorPoint<M> {
249    fn from(p: &Point3D) -> Self {
250        Self { x: p.0, y: p.1, z: Some(p.2), m: None, t: None }
251    }
252}
253impl<M1: Clone, M2: Clone> Add<&VectorPoint<M2>> for &VectorPoint<M1> {
254    type Output = VectorPoint<M1>;
255    fn add(self, other: &VectorPoint<M2>) -> Self::Output {
256        VectorPoint {
257            x: self.x + other.x,
258            y: self.y + other.y,
259            // Only add `z` if both `self.z` and `other.z` are `Some`
260            z: match (self.z, other.z) {
261                (Some(z1), Some(z2)) => Some(z1 + z2),
262                _ => None, // If either `z` is None, the result is `None`
263            },
264            m: None, // Combine m values
265            t: None, // Handle `t` as necessary
266        }
267    }
268}
269impl<M1: Clone, M2: Clone> AddAssign<&VectorPoint<M2>> for VectorPoint<M1> {
270    fn add_assign(&mut self, other: &VectorPoint<M2>) {
271        self.x += other.x;
272        self.y += other.y;
273        if let (Some(z), Some(other_z)) = (self.z, other.z) {
274            self.z = Some(z + other_z);
275        }
276    }
277}
278impl<M: Clone> Add<f64> for &VectorPoint<M> {
279    type Output = VectorPoint<M>;
280    fn add(self, other: f64) -> Self::Output {
281        VectorPoint {
282            x: self.x + other,
283            y: self.y + other,
284            z: self.z.map(|z| z + other),
285            m: None,
286            t: None,
287        }
288    }
289}
290impl<M: Clone> AddAssign<f64> for VectorPoint<M> {
291    fn add_assign(&mut self, other: f64) {
292        self.x += other;
293        self.y += other;
294        if let Some(z) = self.z {
295            self.z = Some(z + other);
296        }
297    }
298}
299// Implementing the Sub trait for VectorPoint
300impl<M1: Clone, M2: Clone> Sub<&VectorPoint<M2>> for &VectorPoint<M1> {
301    type Output = VectorPoint<M1>;
302    fn sub(self, other: &VectorPoint<M2>) -> Self::Output {
303        VectorPoint {
304            x: self.x - other.x,
305            y: self.y - other.y,
306            z: match (self.z, other.z) {
307                (Some(z1), Some(z2)) => Some(z1 - z2),
308                _ => None, // If either `z` is None, the result is `None`
309            },
310            m: None, // Combine m values
311            t: None, // Handle `t` as necessary
312        }
313    }
314}
315impl<M1: Clone, M2: Clone> SubAssign<&VectorPoint<M2>> for VectorPoint<M1> {
316    fn sub_assign(&mut self, other: &VectorPoint<M2>) {
317        self.x -= other.x;
318        self.y -= other.y;
319        if let (Some(z), Some(other_z)) = (self.z, other.z) {
320            self.z = Some(z - other_z);
321        }
322    }
323}
324impl<M: Clone> Sub<f64> for &VectorPoint<M> {
325    type Output = VectorPoint<M>;
326    fn sub(self, other: f64) -> Self::Output {
327        VectorPoint {
328            x: self.x - other,
329            y: self.y - other,
330            z: self.z.map(|z| z - other),
331            m: None,
332            t: None,
333        }
334    }
335}
336impl<M: Clone> SubAssign<f64> for VectorPoint<M> {
337    fn sub_assign(&mut self, other: f64) {
338        self.x -= other;
339        self.y -= other;
340        if let Some(z) = self.z {
341            self.z = Some(z - other);
342        }
343    }
344}
345// Implementing the Neg trait for VectorPoint
346impl<M: Clone> Neg for &VectorPoint<M> {
347    type Output = VectorPoint<M>;
348    fn neg(self) -> Self::Output {
349        VectorPoint { x: -self.x, y: -self.y, z: self.z.map(|z| -z), m: None, t: None }
350    }
351}
352// Implementing the Div trait for VectorPoint
353impl<M1: Clone, M2: Clone> Div<&VectorPoint<M2>> for &VectorPoint<M1> {
354    type Output = VectorPoint<M1>;
355    fn div(self, other: &VectorPoint<M2>) -> Self::Output {
356        VectorPoint {
357            x: self.x / other.x,
358            y: self.y / other.y,
359            z: match (self.z, other.z) {
360                (Some(z1), Some(z2)) => Some(z1 / z2),
361                _ => None, // If either `z` is None, the result is `None`
362            },
363            m: None, // Combine m values
364            t: None, // Handle `t` as necessary
365        }
366    }
367}
368impl<M1: Clone, M2: Clone> DivAssign<&VectorPoint<M2>> for VectorPoint<M1> {
369    fn div_assign(&mut self, other: &VectorPoint<M2>) {
370        self.x /= other.x;
371        self.y /= other.y;
372        if let (Some(z), Some(other_z)) = (self.z, other.z) {
373            self.z = Some(z / other_z);
374        }
375    }
376}
377impl<M: Clone> Div<f64> for &VectorPoint<M> {
378    type Output = VectorPoint<M>;
379    fn div(self, other: f64) -> Self::Output {
380        VectorPoint {
381            x: self.x / other,
382            y: self.y / other,
383            z: self.z.map(|z| z / other),
384            m: None,
385            t: None,
386        }
387    }
388}
389impl<M: Clone> DivAssign<f64> for VectorPoint<M> {
390    fn div_assign(&mut self, other: f64) {
391        self.x /= other;
392        self.y /= other;
393        if let Some(z) = self.z {
394            self.z = Some(z / other);
395        }
396    }
397}
398// Implementing the Mul trait for VectorPoint
399impl<M1: Clone, M2: Clone> Mul<&VectorPoint<M2>> for &VectorPoint<M1> {
400    type Output = VectorPoint<M1>;
401    fn mul(self, other: &VectorPoint<M2>) -> Self::Output {
402        VectorPoint {
403            x: self.x * other.x,
404            y: self.y * other.y,
405            z: match (self.z, other.z) {
406                (Some(z1), Some(z2)) => Some(z1 * z2),
407                _ => None, // If either `z` is None, the result is `None`
408            },
409            m: None, // Combine m values
410            t: None, // Handle `t` as necessary
411        }
412    }
413}
414impl<M1: Clone, M2: Clone> MulAssign<&VectorPoint<M2>> for VectorPoint<M1> {
415    fn mul_assign(&mut self, other: &VectorPoint<M2>) {
416        self.x *= other.x;
417        self.y *= other.y;
418        if let (Some(z), Some(other_z)) = (self.z, other.z) {
419            self.z = Some(z * other_z);
420        }
421    }
422}
423impl<M: Clone> Mul<f64> for &VectorPoint<M> {
424    type Output = VectorPoint<M>;
425    fn mul(self, other: f64) -> Self::Output {
426        VectorPoint {
427            x: self.x * other,
428            y: self.y * other,
429            z: self.z.map(|z| z * other),
430            m: None,
431            t: None,
432        }
433    }
434}
435impl<M: Clone> MulAssign<f64> for VectorPoint<M> {
436    fn mul_assign(&mut self, other: f64) {
437        self.x *= other;
438        self.y *= other;
439        if let Some(z) = self.z {
440            self.z = Some(z * other);
441        }
442    }
443}
444impl<M: Clone> Rem<f64> for VectorPoint<M> {
445    type Output = VectorPoint<M>;
446
447    fn rem(self, modulus: f64) -> Self::Output {
448        self.modulo(modulus)
449    }
450}
451impl<M: Clone> RemAssign<f64> for VectorPoint<M> {
452    fn rem_assign(&mut self, modulus: f64) {
453        let modulus = fabs(modulus);
454        self.x = fmod(self.x, modulus);
455        self.y = fmod(self.y, modulus);
456        if let Some(z) = self.z {
457            self.z = Some(fmod(z, modulus));
458        }
459    }
460}
461impl<M: Clone> Eq for VectorPoint<M> {}
462impl<M: Clone> Ord for VectorPoint<M> {
463    fn cmp(&self, other: &VectorPoint<M>) -> Ordering {
464        match self.x.partial_cmp(&other.x) {
465            Some(Ordering::Equal) => {}
466            other => return other.unwrap_or(Ordering::Greater), /* Handle cases where `x` comparison is not equal */
467        }
468        match self.y.partial_cmp(&other.y) {
469            Some(Ordering::Equal) => {}
470            other => return other.unwrap_or(Ordering::Greater), /* Handle cases where `y` comparison is not equal */
471        }
472        match self.z.partial_cmp(&other.z) {
473            Some(order) => order,
474            None => Ordering::Equal, // This handles the NaN case safely
475        }
476    }
477}
478impl<M: Clone> PartialEq for VectorPoint<M> {
479    fn eq(&self, other: &VectorPoint<M>) -> bool {
480        self.x == other.x && self.y == other.y && self.z == other.z
481    }
482}
483impl<M: Clone> PartialOrd for VectorPoint<M> {
484    fn partial_cmp(&self, other: &VectorPoint<M>) -> Option<Ordering> {
485        Some(self.cmp(other))
486    }
487}