1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
use anyhow::Result;
use itertools::Itertools;
use ndarray::{arr1, stack, Array, Array1, Array2, ArrayView1, ArrayView2, Axis};
use ndarray_stats::QuantileExt;
use std::collections::HashMap;
use std::ops::{BitAnd, BitAndAssign, Mul, Sub};

use crate::training::node_estimation::multi_kde::gaussian_kde::GaussianKDEBase;
use crate::utils::boolean::BooleanCollectives;
use crate::utils::float_approx::FloatApprox;
use crate::utils::itertools::FromToAble;
use crate::utils::stack::Stack;

pub(crate) mod actors;
mod gaussian_kde;
mod gaussian_kernel_estimate;

#[derive(Debug, Clone)]
pub(crate) struct MultiKDEBase {
    resolution: usize,
    peak_order: usize,
}

impl MultiKDEBase {
    #[allow(dead_code)]
    pub fn new(resolution: usize, peak_order: usize) -> Self {
        Self {
            resolution,
            peak_order,
        }
    }

    #[allow(dead_code)]
    pub fn cluster(&self, data: ArrayView2<f32>) -> Result<Array1<usize>> {
        let n_dims = data.shape()[1];
        let mut cluster_centers = Vec::with_capacity(n_dims);
        for points in data.axis_iter(Axis(1)) {
            let points = points.insert_axis(Axis(1));
            let gkde = GaussianKDEBase::new(points);
            let grid_min = *points.min()?;
            let grid_max = *points.max()?;
            let grid = Array::linspace(grid_min, grid_max, self.resolution).insert_axis(Axis(1));
            let kernel_estimate = gkde.evaluate(grid)?;
            let peaks = self.find_peak_values(kernel_estimate.view(), grid_min, grid_max);
            let assigned_peak_values = if !peaks.is_empty() {
                self.assign_closest_peak_values(points, peaks)
            } else {
                Array1::from(vec![0.0; points.len()])
            };
            cluster_centers.push(assigned_peak_values);
        }
        let cluster_centers = cluster_centers.stack(Axis(1))?;
        let (labels, _) = self.extract_labels_from_centers(cluster_centers);
        Ok(Array::from(labels))
    }

    fn find_peak_values(
        &self,
        kernel_estimate: ArrayView1<f32>,
        grid_min: f32,
        grid_max: f32,
    ) -> Vec<f32> {
        let padding = (grid_max - grid_min).mul(0.1);
        let grid = Array::linspace(grid_min - padding, grid_max + padding, self.resolution);
        let result = self
            .find_peak_index(kernel_estimate)
            .iter()
            .map(|i| grid[*i])
            .collect();
        result
    }

    fn find_peak_index(&self, kernel_estimate: ArrayView1<f32>) -> Vec<usize> {
        let mut results: Array1<bool> = arr1(vec![true; kernel_estimate.len()].as_slice());
        let datalen = results.len();
        for shift in 1..self.peak_order + 1 {
            let last_element = vec![&kernel_estimate[datalen - 1]; shift];
            let first_element = vec![kernel_estimate[0]; shift];
            let plus_iter = kernel_estimate
                .iter()
                .fromto(shift, datalen)
                .chain(last_element);
            let minus_iter = first_element
                .iter()
                .chain(kernel_estimate.iter().fromto(0, datalen - shift));

            let current_results = kernel_estimate
                .iter()
                .zip(plus_iter)
                .zip(minus_iter)
                .map(|((main, plus), minus)| main.gt(plus).bitand(main.gt(minus)))
                .collect::<Array1<bool>>();

            results.bitand_assign(&current_results);

            if !results.any() {
                break;
            }
        }

        results
            .indexed_iter()
            .filter_map(|(index, bit)| if *bit { Some(index) } else { None })
            .collect()
    }

    fn assign_closest_peak_values(&self, points: ArrayView2<f32>, peaks: Vec<f32>) -> Array1<f32> {
        let n_points = points.len();
        let n_peaks = peaks.len();
        let broadcast_shape = [n_points, n_peaks];
        let mut peaks_arr = Array1::from(peaks.clone())
            .broadcast(broadcast_shape)
            .unwrap()
            .to_owned();
        let broadcast_points = points.broadcast(broadcast_shape).unwrap();
        peaks_arr = peaks_arr.sub(broadcast_points);
        peaks_arr
            .mapv(f32::abs)
            .map_axis(Axis(1), |d| peaks[d.argmin().unwrap()])
    }

    fn extract_labels_from_centers(
        &self,
        cluster_centers: Array2<f32>,
    ) -> (Vec<usize>, Array2<f32>) {
        let mut key = 0;
        let mut unique_cluster_centers: HashMap<Vec<FloatApprox<f32>>, usize> = HashMap::new();
        let mut labels = vec![];
        for center in cluster_centers.axis_iter(Axis(0)) {
            let approx_center = FloatApprox::from_array_view_clone(center);
            match &unique_cluster_centers.get(&approx_center) {
                Some(k) => labels.push(*(*k)),
                None => {
                    unique_cluster_centers.insert(approx_center, key);
                    labels.push(key);
                    key += 1;
                }
            }
        }

        let sorted: Vec<Array1<f32>> = unique_cluster_centers
            .into_iter()
            .sorted_by_key(|(_, k)| *k)
            .map(|(center, _)| {
                Array1::from(
                    center
                        .into_iter()
                        .map(|coord| coord.to_base())
                        .collect_vec(),
                )
            })
            .collect();

        let sorted: Vec<ArrayView1<f32>> = sorted.iter().map(Array1::view).collect();

        let cluster_centers = stack(Axis(0), sorted.as_slice()).unwrap();

        (labels, cluster_centers)
    }
}

impl Default for MultiKDEBase {
    fn default() -> Self {
        Self {
            resolution: 250,
            peak_order: 1,
        }
    }
}

#[cfg(test)]
mod tests {
    use crate::data_manager::data_reader::read_data_;
    use crate::training::node_estimation::multi_kde::MultiKDEBase;
    use ndarray::{arr1, arr2, Array1, Axis};
    use ndarray_linalg::assert_close_l1;

    #[test]
    fn find_peak() {
        let a = arr1(&[1., 2., 1.]);
        let expected = vec![1];
        let mkde = MultiKDEBase::default();
        let indices = mkde.find_peak_index(a.view());
        assert_eq!(indices, expected)
    }

    #[test]
    fn multiple_peaks() {
        let a = arr1(&[1., 2., 1., 2., 1.]);
        let expected = vec![1, 3];
        let mkde = MultiKDEBase::default();
        let indices = mkde.find_peak_index(a.view());
        assert_eq!(indices, expected)
    }

    #[test]
    fn no_peaks() {
        let a = arr1(&[1., 1., 1.]);
        let expected = vec![];
        let mkde = MultiKDEBase::default();
        let indices = mkde.find_peak_index(a.view());
        assert_eq!(indices, expected)
    }

    #[test]
    fn find_correct_peak_values() {
        let a = arr1(&[1., 2., 1., 2., 1.]);
        let expected = vec![1., 3.];
        let mkde = MultiKDEBase::new(5, 1);
        let peaks = mkde.find_peak_values(a.view(), 0., 4.);
        assert_close_l1!(&Array1::from_vec(peaks), &Array1::from_vec(expected), 0.4)
    }

    #[test]
    fn assign_correct_peaks() {
        let points = arr2(&[[1., 1.], [2., 1.], [2.5, 1.], [4., 1.], [5., 1.], [5.5, 1.]]);
        let peaks = vec![2., 5.];
        let expected = arr1(&[2., 2., 2., 5., 5., 5.]);
        let mkde = MultiKDEBase::default();
        if let Some(col) = points.axis_iter(Axis(1)).next() {
            let assignments = mkde.assign_closest_peak_values(col.insert_axis(Axis(1)), peaks);
            assert_eq!(assignments, expected);
        }
    }

    #[test]
    fn returns_labels_from_cluster_centers() {
        let arr = arr2(&[[1., 2.], [2., 1.], [1., 2.]]);
        let expected = vec![0, 1, 0];
        let mkde = MultiKDEBase::default();
        let (labels, _) = mkde.extract_labels_from_centers(arr);
        assert_eq!(labels, expected)
    }

    #[test]
    fn multidim_clustering() {
        let points = arr2(&[
            [1.1, 0.9],
            [0.9, 1.1],
            [1.1, 1.1],
            [0.9, 0.9],
            [-1.1, -0.9],
            [-0.9, -1.1],
            [-1.1, -1.1],
            [-0.9, -0.9],
        ]);
        let expected = arr1(&[0, 0, 0, 0, 1, 1, 1, 1]);
        let mkde = MultiKDEBase::default();
        let assignments = mkde.cluster(points.view()).unwrap();
        assert_eq!(assignments, expected)
    }

    #[test]
    fn multidim_same_result_as_python() {
        let points = read_data_("data/cluster-test-data.csv");
        let mut expected = vec![0; 500];
        expected.extend(vec![1; 500]);
        let expected = Array1::from(expected);
        let mkde = MultiKDEBase::default();
        let assignments = mkde.cluster(points.view()).unwrap();
        assert_eq!(assignments, expected);
    }

    #[test]
    fn kde_timing() {
        let mut points = vec![1.0; 5];
        points.extend(vec![2.0; 5]);
        let points = Array1::from(points).insert_axis(Axis(1));
        let mkde = MultiKDEBase::default();
        let assignments = mkde.cluster(points.view()).unwrap().to_vec();

        let mut expected = vec![0; 5];
        expected.extend(vec![1; 5]);

        assert_eq!(assignments, expected);
    }
}