1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
/*
* Copyright 2007 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
use std::collections::HashMap;
use crate::{
common::{BitMatrix, DecoderRXingResult, DetectorRXingResult, Result},
point_f, BarcodeFormat, Binarizer, DecodeHintType, DecodeHintValue, Exceptions, Point,
RXingResult, RXingResultMetadataType, RXingResultMetadataValue, Reader,
};
use super::{
decoder::Decoder,
detector::{zxing_cpp_detector, Detector},
};
use once_cell::sync::Lazy;
static DECODER: Lazy<Decoder> = Lazy::new(Decoder::new);
/**
* This implementation can detect and decode Data Matrix codes in an image.
*
* @author bbrown@google.com (Brian Brown)
*/
#[derive(Default)]
pub struct DataMatrixReader;
// private static final Point[] NO_POINTS = new Point[0];
// private final Decoder decoder = new Decoder();
impl Reader for DataMatrixReader {
/**
* Locates and decodes a Data Matrix code in an image.
*
* @return a String representing the content encoded by the Data Matrix code
* @throws NotFoundException if a Data Matrix code cannot be found
* @throws FormatException if a Data Matrix code cannot be decoded
* @throws ChecksumException if error correction fails
*/
fn decode<B: Binarizer>(
&mut self,
image: &mut crate::BinaryBitmap<B>,
) -> Result<crate::RXingResult> {
self.decode_with_hints(image, &HashMap::new())
}
/**
* Locates and decodes a Data Matrix code in an image.
*
* @return a String representing the content encoded by the Data Matrix code
* @throws NotFoundException if a Data Matrix code cannot be found
* @throws FormatException if a Data Matrix code cannot be decoded
* @throws ChecksumException if error correction fails
*/
fn decode_with_hints<B: Binarizer>(
&mut self,
image: &mut crate::BinaryBitmap<B>,
hints: &crate::DecodingHintDictionary,
) -> Result<crate::RXingResult> {
let try_harder = matches!(
hints.get(&DecodeHintType::TRY_HARDER),
Some(DecodeHintValue::TryHarder(true))
);
let decoderRXingResult;
let mut points = Vec::new();
if hints.contains_key(&DecodeHintType::PURE_BARCODE) {
let bits = self.extractPureBits(image.get_black_matrix())?;
decoderRXingResult = DECODER.decode(&bits)?;
points.clear();
} else {
//Result<DatamatrixDetectorResult, Exceptions>
decoderRXingResult = if let Ok(fnd) = || -> Result<DecoderRXingResult> {
let detectorRXingResult =
zxing_cpp_detector::detect(image.get_black_matrix(), try_harder, true)?;
let decoded = DECODER.decode(detectorRXingResult.getBits())?;
points = detectorRXingResult.getPoints().to_vec();
Ok(decoded)
}() {
fnd
} else if try_harder {
if let Ok(fnd) = || -> Result<DecoderRXingResult> {
let detectorRXingResult = Detector::new(image.get_black_matrix())?.detect()?;
let decoded = DECODER.decode(detectorRXingResult.getBits())?;
points = detectorRXingResult.getPoints().to_vec();
Ok(decoded)
}() {
fnd
} else {
let bits = self.extractPureBits(image.get_black_matrix())?;
DECODER.decode(&bits)?
}
} else {
return Err(Exceptions::NOT_FOUND);
};
// decoderRXingResult = DECODER.decode(detectorRXingResult.getBits())?;
}
let mut result = RXingResult::new(
decoderRXingResult.getText(),
decoderRXingResult.getRawBytes().clone(),
points.clone(),
BarcodeFormat::DATA_MATRIX,
);
let byteSegments = decoderRXingResult.getByteSegments();
if !byteSegments.is_empty() {
result.putMetadata(
RXingResultMetadataType::BYTE_SEGMENTS,
RXingResultMetadataValue::ByteSegments(byteSegments.clone()),
);
}
let ecLevel = decoderRXingResult.getECLevel();
if !ecLevel.is_empty() {
result.putMetadata(
RXingResultMetadataType::ERROR_CORRECTION_LEVEL,
RXingResultMetadataValue::ErrorCorrectionLevel(ecLevel.to_string()),
);
}
let other_meta = decoderRXingResult.getOther();
if let Some(other) = other_meta {
if let Some(dcr) = other.downcast_ref::<String>() {
result.putMetadata(
RXingResultMetadataType::OTHER,
RXingResultMetadataValue::OTHER(dcr.to_owned()),
);
}
}
let contentType = decoderRXingResult.getContentType();
if !contentType.is_empty() {
result.putMetadata(
RXingResultMetadataType::CONTENT_TYPE,
RXingResultMetadataValue::ContentType(contentType.to_owned()),
);
}
let mirrored = decoderRXingResult.getIsMirrored();
if mirrored {
result.putMetadata(
RXingResultMetadataType::IS_MIRRORED,
RXingResultMetadataValue::IsMirrored(mirrored),
);
}
result.putMetadata(
RXingResultMetadataType::SYMBOLOGY_IDENTIFIER,
RXingResultMetadataValue::SymbologyIdentifier(format!(
"]d{}",
decoderRXingResult.getSymbologyModifier()
)),
);
Ok(result)
}
fn reset(&mut self) {
// do nothing
}
}
impl DataMatrixReader {
/**
* This method detects a code in a "pure" image -- that is, pure monochrome image
* which contains only an unrotated, unskewed, image of a code, with some white border
* around it. This is a specialized method that works exceptionally fast in this special
* case.
*/
fn extractPureBits(&self, image: &BitMatrix) -> Result<BitMatrix> {
let Some(leftTopBlack) = image.getTopLeftOnBit() else {
return Err(Exceptions::NOT_FOUND);
};
let Some(rightBottomBlack) = image.getBottomRightOnBit() else {
return Err(Exceptions::NOT_FOUND);
};
let moduleSize = Self::moduleSize(leftTopBlack, image)?;
let mut top = leftTopBlack.y;
let bottom = rightBottomBlack.y;
let mut left = leftTopBlack.x;
let right = rightBottomBlack.x;
let matrixWidth = (right as i32 - left as i32 + 1) / moduleSize as i32;
let matrixHeight = (bottom as i32 - top as i32 + 1) / moduleSize as i32;
if matrixWidth <= 0 || matrixHeight <= 0 {
return Err(Exceptions::NOT_FOUND);
// throw NotFoundException.getNotFoundInstance();
}
let matrixWidth = matrixWidth as u32;
let matrixHeight = matrixHeight as u32;
// Push in the "border" by half the module width so that we start
// sampling in the middle of the module. Just in case the image is a
// little off, this will help recover.
let nudge = moduleSize as f32 / 2.0;
top += nudge;
left += nudge;
// Now just read off the bits
let mut bits = BitMatrix::new(matrixWidth, matrixHeight)?;
for y in 0..matrixHeight {
// for (int y = 0; y < matrixHeight; y++) {
let iOffset = top + y as f32 * moduleSize as f32;
for x in 0..matrixWidth {
// for (int x = 0; x < matrixWidth; x++) {
if image.get_point(point_f(left + x as f32 * moduleSize as f32, iOffset)) {
bits.set(x, y);
}
}
}
Ok(bits)
}
fn moduleSize(leftTopBlack: Point, image: &BitMatrix) -> Result<u32> {
let width = image.getWidth();
let mut x = leftTopBlack.x as u32;
let y = leftTopBlack.y as u32;
while x < width && image.get(x, y) {
x += 1;
}
if x == width {
return Err(Exceptions::NOT_FOUND);
}
let moduleSize = x - leftTopBlack.x as u32;
if moduleSize == 0 {
return Err(Exceptions::NOT_FOUND);
}
Ok(moduleSize)
}
}