1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
/*
* Copyright 2009 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// package com.google.zxing.common;
// import com.google.zxing.Binarizer;
// import com.google.zxing.LuminanceSource;
// import com.google.zxing.NotFoundException;
use std::borrow::Cow;
use once_cell::unsync::OnceCell;
use crate::common::Result;
use crate::{Binarizer, Exceptions, LuminanceSource};
use super::{BitArray, BitMatrix};
const LUMINANCE_BITS: usize = 5;
const LUMINANCE_SHIFT: usize = 8 - LUMINANCE_BITS;
const LUMINANCE_BUCKETS: usize = 1 << LUMINANCE_BITS;
/**
* This Binarizer implementation uses the old ZXing global histogram approach. It is suitable
* for low-end mobile devices which don't have enough CPU or memory to use a local thresholding
* algorithm. However, because it picks a global black point, it cannot handle difficult shadows
* and gradients.
*
* Faster mobile devices and all desktop applications should probably use HybridBinarizer instead.
*
* @author dswitkin@google.com (Daniel Switkin)
* @author Sean Owen
*/
pub struct GlobalHistogramBinarizer<LS: LuminanceSource> {
//_luminances: Vec<u8>,
width: usize,
height: usize,
source: LS,
black_matrix: OnceCell<BitMatrix>,
black_row_cache: Vec<OnceCell<BitArray>>,
}
impl<LS: LuminanceSource> Binarizer for GlobalHistogramBinarizer<LS> {
type Source = LS;
fn get_luminance_source(&self) -> &Self::Source {
&self.source
}
// Applies simple sharpening to the row data to improve performance of the 1D Readers.
fn get_black_row(&self, y: usize) -> Result<Cow<BitArray>> {
let row = self.black_row_cache[y].get_or_try_init(|| {
let source = self.get_luminance_source();
let width = source.get_width();
let mut row = BitArray::with_size(width);
// self.initArrays(width);
let localLuminances = source.get_row(y);
let mut localBuckets = [0; LUMINANCE_BUCKETS]; //self.buckets.clone();
for x in 0..width {
// for (int x = 0; x < width; x++) {
localBuckets[((localLuminances[x]) >> LUMINANCE_SHIFT) as usize] += 1;
}
let blackPoint = Self::estimateBlackPoint(&localBuckets)?;
if width < 3 {
// Special case for very small images
for (x, lum) in localLuminances.iter().enumerate().take(width) {
// for x in 0..width {
// for (int x = 0; x < width; x++) {
if (*lum as u32) < blackPoint {
row.set(x);
}
}
} else {
let mut left = localLuminances[0]; // & 0xff;
let mut center = localLuminances[1]; // & 0xff;
for x in 1..width - 1 {
// for (int x = 1; x < width - 1; x++) {
let right = localLuminances[x + 1];
// A simple -1 4 -1 box filter with a weight of 2.
if ((center as i64 * 4) - left as i64 - right as i64) / 2 < blackPoint as i64 {
row.set(x);
}
left = center;
center = right;
}
}
Ok(row)
})?;
Ok(Cow::Borrowed(row))
}
// Does not sharpen the data, as this call is intended to only be used by 2D Readers.
fn get_black_matrix(&self) -> Result<&BitMatrix> {
let matrix = self
.black_matrix
.get_or_try_init(|| Self::build_black_matrix(&self.source))?;
Ok(matrix)
}
fn create_binarizer(&self, source: LS) -> Self {
Self::new(source)
}
fn get_width(&self) -> usize {
self.width
}
fn get_height(&self) -> usize {
self.height
}
}
impl<LS: LuminanceSource> GlobalHistogramBinarizer<LS> {
// const EMPTY: [u8; 0] = [0; 0];
pub fn new(source: LS) -> Self {
Self {
//_luminances: vec![0; source.getWidth()],
width: source.get_width(),
height: source.get_height(),
black_matrix: OnceCell::new(),
black_row_cache: vec![OnceCell::default(); source.get_height()],
source,
}
}
fn build_black_matrix(source: &LS) -> Result<BitMatrix> {
// let source = source.getLuminanceSource();
let width = source.get_width();
let height = source.get_height();
let mut matrix = BitMatrix::new(width as u32, height as u32)?;
// Quickly calculates the histogram by sampling four rows from the image. This proved to be
// more robust on the blackbox tests than sampling a diagonal as we used to do.
// self.initArrays(width);
let mut localBuckets = [0; LUMINANCE_BUCKETS]; //self.buckets.clone();
for y in 1..5 {
// for (int y = 1; y < 5; y++) {
let row = height * y / 5;
let localLuminances = source.get_row(row);
let right = (width * 4) / 5;
let mut x = width / 5;
while x < right {
// for (int x = width / 5; x < right; x++) {
let pixel = localLuminances[x];
localBuckets[(pixel >> LUMINANCE_SHIFT) as usize] += 1;
x += 1;
}
}
let blackPoint = Self::estimateBlackPoint(&localBuckets)?;
// We delay reading the entire image luminance until the black point estimation succeeds.
// Although we end up reading four rows twice, it is consistent with our motto of
// "fail quickly" which is necessary for continuous scanning.
let localLuminances = source.get_matrix();
for y in 0..height {
// for (int y = 0; y < height; y++) {
let offset = y * width;
for x in 0..width {
// for (int x = 0; x < width; x++) {
let pixel = localLuminances[offset + x];
if (pixel as u32) < blackPoint {
matrix.set(x as u32, y as u32);
}
}
}
Ok(matrix)
}
// fn initArrays(&mut self, luminanceSize: usize) {
// // if self.luminances.len() < luminanceSize {
// // self.luminances = ;
// // }
// // // for x in 0..GlobalHistogramBinarizer::LUMINANCE_BUCKETS {
// // // for (int x = 0; x < LUMINANCE_BUCKETS; x++) {
// // self.buckets[x] = 0;
// // }
// }
fn estimateBlackPoint(buckets: &[u32]) -> Result<u32> {
// Find the tallest peak in the histogram.
let numBuckets = buckets.len();
let mut maxBucketCount = 0;
let mut firstPeak = 0;
let mut firstPeakSize = 0;
for (x, bucket) in buckets.iter().enumerate().take(numBuckets) {
// for x in 0..numBuckets {
// for (int x = 0; x < numBuckets; x++) {
if *bucket > firstPeakSize {
firstPeak = x;
firstPeakSize = *bucket;
}
if *bucket > maxBucketCount {
maxBucketCount = *bucket;
}
}
// Find the second-tallest peak which is somewhat far from the tallest peak.
let mut secondPeak = 0;
let mut secondPeakScore = 0;
for (x, bucket) in buckets.iter().enumerate().take(numBuckets) {
// for x in 0..numBuckets {
// for (int x = 0; x < numBuckets; x++) {
let distanceToBiggest = (x as i32 - firstPeak as i32).unsigned_abs();
// Encourage more distant second peaks by multiplying by square of distance.
let score = *bucket * distanceToBiggest * distanceToBiggest;
if score > secondPeakScore {
secondPeak = x;
secondPeakScore = score;
}
}
// Make sure firstPeak corresponds to the black peak.
if firstPeak > secondPeak {
std::mem::swap(&mut firstPeak, &mut secondPeak);
}
// If there is too little contrast in the image to pick a meaningful black point, throw rather
// than waste time trying to decode the image, and risk false positives.
if secondPeak - firstPeak <= numBuckets / 16 {
return Err(Exceptions::not_found_with(
"secondPeak - firstPeak <= numBuckets / 16 ",
));
}
// Find a valley between them that is low and closer to the white peak.
let mut bestValley = secondPeak - 1;
let mut bestValleyScore = -1;
let mut x = secondPeak;
while x > firstPeak {
// for (int x = secondPeak - 1; x > firstPeak; x--) {
let fromFirst = x - firstPeak;
let score =
fromFirst * fromFirst * (secondPeak - x) * (maxBucketCount - buckets[x]) as usize;
if score as i32 > bestValleyScore {
bestValley = x;
bestValleyScore = score as i32;
}
x -= 1;
}
Ok((bestValley as u32) << LUMINANCE_SHIFT)
}
}