1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
/*
* Copyright 2011 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
use std::collections::HashMap;
use crate::{
common::{BitMatrix, DetectorRXingResult, Result},
BarcodeFormat, Binarizer, DecodeHintType, DecodeHintValue, Exceptions, RXingResult,
RXingResultMetadataType, Reader,
};
use super::{decoder::maxicode_decoder, detector};
/**
* This implementation can detect and decode a MaxiCode in an image.
*/
#[derive(Default)]
pub struct MaxiCodeReader {
// private final Decoder decoder = new Decoder();
}
impl Reader for MaxiCodeReader {
/**
* Locates and decodes a MaxiCode in an image.
*
* @return a String representing the content encoded by the MaxiCode
* @throws NotFoundException if a MaxiCode cannot be found
* @throws FormatException if a MaxiCode cannot be decoded
* @throws ChecksumException if error correction fails
*/
fn decode<B: Binarizer>(
&mut self,
image: &mut crate::BinaryBitmap<B>,
) -> Result<crate::RXingResult> {
self.decode_with_hints(image, &HashMap::new())
}
/**
* Locates and decodes a MaxiCode in an image.
*
* @return a String representing the content encoded by the MaxiCode
* @throws NotFoundException if a MaxiCode cannot be found
* @throws FormatException if a MaxiCode cannot be decoded
* @throws ChecksumException if error correction fails
*/
fn decode_with_hints<B: Binarizer>(
&mut self,
image: &mut crate::BinaryBitmap<B>,
hints: &crate::DecodingHintDictionary,
) -> Result<crate::RXingResult> {
// Note that MaxiCode reader effectively always assumes PURE_BARCODE mode
// and can't detect it in an image
let try_harder = matches!(
hints.get(&DecodeHintType::TRY_HARDER),
Some(DecodeHintValue::TryHarder(true))
);
let mut rotation = None;
let decoderRXingResult = if try_harder {
let result = detector::detect(image.get_black_matrix_mut(), try_harder)?;
rotation = Some(result.rotation());
let parsed_result = detector::read_bits(result.getBits())?;
maxicode_decoder::decode_with_hints(&parsed_result, hints)?
} else {
let bits = Self::extractPureBits(image.get_black_matrix())?;
maxicode_decoder::decode_with_hints(&bits, hints)?
};
// let bits = Self::extractPureBits(image.getBlackMatrix())?;
// let decoderRXingResult = maxicode_decoder::decode_with_hints(bits, hints)?;
let mut result = RXingResult::new(
decoderRXingResult.getText(),
decoderRXingResult.getRawBytes().clone(),
Vec::new(),
BarcodeFormat::MAXICODE,
);
let ecLevel = decoderRXingResult.getECLevel();
if !ecLevel.is_empty() {
result.putMetadata(
RXingResultMetadataType::ERROR_CORRECTION_LEVEL,
crate::RXingResultMetadataValue::ErrorCorrectionLevel(ecLevel.to_owned()),
);
}
if let Some(rot) = rotation {
if rot > 0.0 {
result.putMetadata(
RXingResultMetadataType::ORIENTATION,
crate::RXingResultMetadataValue::Orientation(rot as i32),
)
}
}
Ok(result)
}
}
impl MaxiCodeReader {
pub const MATRIX_WIDTH: u32 = 30;
pub const MATRIX_HEIGHT: u32 = 33;
/**
* This method detects a code in a "pure" image -- that is, pure monochrome image
* which contains only an unrotated, unskewed, image of a code, with some white border
* around it. This is a specialized method that works exceptionally fast in this special
* case.
*/
fn extractPureBits(image: &BitMatrix) -> Result<BitMatrix> {
let enclosingRectangleOption = image.getEnclosingRectangle();
if enclosingRectangleOption.is_none() {
return Err(Exceptions::NOT_FOUND);
}
let enclosingRectangle = enclosingRectangleOption.ok_or(Exceptions::NOT_FOUND)?;
let left = enclosingRectangle[0];
let top = enclosingRectangle[1];
let width = enclosingRectangle[2];
let height = enclosingRectangle[3];
// Now just read off the bits
let mut bits = BitMatrix::new(Self::MATRIX_WIDTH, Self::MATRIX_HEIGHT)?;
for y in 0..Self::MATRIX_HEIGHT {
// for (int y = 0; y < MATRIX_HEIGHT; y++) {
let iy = (top + (y * height + height / 2) / Self::MATRIX_HEIGHT).min(height - 1);
for x in 0..Self::MATRIX_WIDTH {
// for (int x = 0; x < MATRIX_WIDTH; x++) {
// srowen: I don't quite understand why the formula below is necessary, but it
// can walk off the image if left + width = the right boundary. So cap it.
let ix = left
+ ((x * width + width / 2 + (y & 0x01) * width / 2) / Self::MATRIX_WIDTH)
.min(width - 1);
if image.get(ix, iy) {
bits.set(x, y);
}
}
}
Ok(bits)
}
}