1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
/*
 * Copyright 2009 ZXing authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// package com.google.zxing.common;

// import com.google.zxing.Binarizer;
// import com.google.zxing.LuminanceSource;
// import com.google.zxing.NotFoundException;

use std::{borrow::Cow, rc::Rc};

use once_cell::unsync::OnceCell;

use crate::common::Result;
use crate::{Binarizer, LuminanceSource};

use super::{BitArray, BitMatrix, GlobalHistogramBinarizer};

/**
 * This class implements a local thresholding algorithm, which while slower than the
 * GlobalHistogramBinarizer, is fairly efficient for what it does. It is designed for
 * high frequency images of barcodes with black data on white backgrounds. For this application,
 * it does a much better job than a global blackpoint with severe shadows and gradients.
 * However it tends to produce artifacts on lower frequency images and is therefore not
 * a good general purpose binarizer for uses outside ZXing.
 *
 * This class extends GlobalHistogramBinarizer, using the older histogram approach for 1D readers,
 * and the newer local approach for 2D readers. 1D decoding using a per-row histogram is already
 * inherently local, and only fails for horizontal gradients. We can revisit that problem later,
 * but for now it was not a win to use local blocks for 1D.
 *
 * This Binarizer is the default for the unit tests and the recommended class for library users.
 *
 * @author dswitkin@google.com (Daniel Switkin)
 */
pub struct HybridBinarizer {
    //width: usize,
    //height: usize,
    //source: Box<dyn LuminanceSource>,
    ghb: GlobalHistogramBinarizer,
    black_matrix: OnceCell<BitMatrix>,
}
impl Binarizer for HybridBinarizer {
    fn getLuminanceSource(&self) -> &Box<dyn LuminanceSource> {
        self.ghb.getLuminanceSource()
    }

    fn getBlackRow(&self, y: usize) -> Result<Cow<BitArray>> {
        self.ghb.getBlackRow(y)
    }

    /**
     * Calculates the final BitMatrix once for all requests. This could be called once from the
     * constructor instead, but there are some advantages to doing it lazily, such as making
     * profiling easier, and not doing heavy lifting when callers don't expect it.
     */
    fn getBlackMatrix(&self) -> Result<&BitMatrix> {
        let matrix = self
            .black_matrix
            .get_or_try_init(|| Self::calculateBlackMatrix(&self.ghb))?;
        Ok(matrix)
    }

    fn createBinarizer(&self, source: Box<dyn LuminanceSource>) -> Rc<dyn Binarizer> {
        Rc::new(HybridBinarizer::new(source))
    }

    fn getWidth(&self) -> usize {
        self.ghb.getWidth()
    }

    fn getHeight(&self) -> usize {
        self.ghb.getHeight()
    }
}
impl HybridBinarizer {
    // This class uses 5x5 blocks to compute local luminance, where each block is 8x8 pixels.
    // So this is the smallest dimension in each axis we can accept.
    const BLOCK_SIZE_POWER: usize = 3;
    const BLOCK_SIZE: usize = 1 << HybridBinarizer::BLOCK_SIZE_POWER; // ...0100...00
    const BLOCK_SIZE_MASK: usize = HybridBinarizer::BLOCK_SIZE - 1; // ...0011...11
    const MINIMUM_DIMENSION: usize = HybridBinarizer::BLOCK_SIZE * 5;
    const MIN_DYNAMIC_RANGE: usize = 24;

    pub fn new(source: Box<dyn LuminanceSource>) -> Self {
        let ghb = GlobalHistogramBinarizer::new(source);
        Self {
            black_matrix: OnceCell::new(),
            ghb,
        }
    }

    fn calculateBlackMatrix(ghb: &GlobalHistogramBinarizer) -> Result<BitMatrix> {
        // let matrix;
        let source = ghb.getLuminanceSource();
        let width = source.getWidth();
        let height = source.getHeight();
        let matrix = if width >= HybridBinarizer::MINIMUM_DIMENSION
            && height >= HybridBinarizer::MINIMUM_DIMENSION
        {
            let luminances = source.getMatrix();
            let mut sub_width = width >> HybridBinarizer::BLOCK_SIZE_POWER;
            if (width & HybridBinarizer::BLOCK_SIZE_MASK) != 0 {
                sub_width += 1;
            }
            let mut sub_height = height >> HybridBinarizer::BLOCK_SIZE_POWER;
            if (height & HybridBinarizer::BLOCK_SIZE_MASK) != 0 {
                sub_height += 1;
            }
            let black_points = Self::calculateBlackPoints(
                &luminances,
                sub_width as u32,
                sub_height as u32,
                width as u32,
                height as u32,
            );

            let mut new_matrix = BitMatrix::new(width as u32, height as u32)?;
            Self::calculateThresholdForBlock(
                &luminances,
                sub_width as u32,
                sub_height as u32,
                width as u32,
                height as u32,
                &black_points,
                &mut new_matrix,
            );
            Ok(new_matrix)
        } else {
            // If the image is too small, fall back to the global histogram approach.
            let m = ghb.getBlackMatrix()?;
            Ok(m.clone())
        };
        //  dbg!(matrix.to_string());
        matrix
    }

    /**
     * For each block in the image, calculate the average black point using a 5x5 grid
     * of the blocks around it. Also handles the corner cases (fractional blocks are computed based
     * on the last pixels in the row/column which are also used in the previous block).
     */
    fn calculateThresholdForBlock(
        luminances: &[u8],
        sub_width: u32,
        sub_height: u32,
        width: u32,
        height: u32,
        black_points: &[Vec<u32>],
        matrix: &mut BitMatrix,
    ) {
        let maxYOffset = height - HybridBinarizer::BLOCK_SIZE as u32;
        let maxXOffset = width - HybridBinarizer::BLOCK_SIZE as u32;
        for y in 0..sub_height {
            // for (int y = 0; y < subHeight; y++) {
            let mut yoffset = y << HybridBinarizer::BLOCK_SIZE_POWER;
            if yoffset > maxYOffset {
                yoffset = maxYOffset;
            }
            let top = Self::cap(y, sub_height - 3);
            for x in 0..sub_width {
                //   for (int x = 0; x < subWidth; x++) {
                let mut xoffset = x << HybridBinarizer::BLOCK_SIZE_POWER;
                if xoffset > maxXOffset {
                    xoffset = maxXOffset;
                }
                let left = Self::cap(x, sub_width - 3);
                let mut sum = 0;
                for z in -2..=2 {
                    // for (int z = -2; z <= 2; z++) {
                    let blackRow = &black_points[(top as i32 + z) as usize];
                    sum += blackRow[(left - 2) as usize]
                        + blackRow[(left - 1) as usize]
                        + blackRow[left as usize]
                        + blackRow[(left + 1) as usize]
                        + blackRow[(left + 2) as usize];
                }
                let average = sum / 25;
                Self::thresholdBlock(luminances, xoffset, yoffset, average, width, matrix);
            }
        }
    }

    #[inline(always)]
    fn cap(value: u32, max: u32) -> u32 {
        if value < 2 {
            2
        } else {
            value.min(max)
        }
    }

    /**
     * Applies a single threshold to a block of pixels.
     */
    fn thresholdBlock(
        luminances: &[u8],
        xoffset: u32,
        yoffset: u32,
        threshold: u32,
        stride: u32,
        matrix: &mut BitMatrix,
    ) {
        let mut offset = yoffset * stride + xoffset;
        for y in 0..HybridBinarizer::BLOCK_SIZE {
            // for (int y = 0, offset = yoffset * stride + xoffset; y < HybridBinarizer::BLOCK_SIZE; y++, offset += stride) {
            for x in 0..HybridBinarizer::BLOCK_SIZE {
                //   for (int x = 0; x < HybridBinarizer::BLOCK_SIZE; x++) {
                // Comparison needs to be <= so that black == 0 pixels are black even if the threshold is 0.
                if luminances[offset as usize + x] as u32 <= threshold {
                    matrix.set(xoffset + x as u32, yoffset + y as u32);
                }
            }
            offset += stride;
        }
    }

    /**
     * Calculates a single black point for each block of pixels and saves it away.
     * See the following thread for a discussion of this algorithm:
     *  http://groups.google.com/group/zxing/browse_thread/thread/d06efa2c35a7ddc0
     */
    fn calculateBlackPoints(
        luminances: &[u8],
        subWidth: u32,
        subHeight: u32,
        width: u32,
        height: u32,
    ) -> Vec<Vec<u32>> {
        let maxYOffset = height as usize - HybridBinarizer::BLOCK_SIZE;
        let maxXOffset = width as usize - HybridBinarizer::BLOCK_SIZE;
        let mut blackPoints = vec![vec![0; subWidth as usize]; subHeight as usize];
        for y in 0..subHeight {
            // for (int y = 0; y < subHeight; y++) {
            let mut yoffset = y << HybridBinarizer::BLOCK_SIZE_POWER;
            if yoffset > maxYOffset as u32 {
                yoffset = maxYOffset as u32;
            }
            for x in 0..subWidth {
                //   for (int x = 0; x < subWidth; x++) {
                let mut xoffset = x << HybridBinarizer::BLOCK_SIZE_POWER;
                if xoffset > maxXOffset as u32 {
                    xoffset = maxXOffset as u32;
                }
                let mut sum: u32 = 0;
                let mut min = 0xff;
                let mut max = 0;

                let mut offset = yoffset * width + xoffset;
                let mut yy = 0;
                while yy < HybridBinarizer::BLOCK_SIZE {
                    // for (int yy = 0, offset = yoffset * width + xoffset; yy < HybridBinarizer::BLOCK_SIZE; yy++, offset += width) {
                    for xx in 0..HybridBinarizer::BLOCK_SIZE {
                        //   for (int xx = 0; xx < HybridBinarizer::BLOCK_SIZE; xx++) {
                        let pixel = luminances[offset as usize + xx];
                        sum += pixel as u32;
                        // still looking for good contrast
                        if pixel < min {
                            min = pixel;
                        }
                        if pixel > max {
                            max = pixel;
                        }
                    }
                    // short-circuit min/max tests once dynamic range is met
                    if (max - min) as usize > HybridBinarizer::MIN_DYNAMIC_RANGE {
                        // finish the rest of the rows quickly
                        offset += width;
                        yy += 1;
                        while yy < HybridBinarizer::BLOCK_SIZE {
                            // for (yy++, offset += width; yy < HybridBinarizer::BLOCK_SIZE; yy++, offset += width) {
                            for xx in 0..HybridBinarizer::BLOCK_SIZE {
                                //   for (int xx = 0; xx < BLOCK_SIZE; xx++) {
                                sum += luminances[offset as usize + xx] as u32;
                            }
                            yy += 1;
                            offset += width;
                        }
                        break;
                    }
                    yy += 1;
                    offset += width;
                }

                // The default estimate is the average of the values in the block.
                let mut average = sum >> (HybridBinarizer::BLOCK_SIZE_POWER * 2);
                if (max - min) as usize <= HybridBinarizer::MIN_DYNAMIC_RANGE {
                    // If variation within the block is low, assume this is a block with only light or only
                    // dark pixels. In that case we do not want to use the average, as it would divide this
                    // low contrast area into black and white pixels, essentially creating data out of noise.
                    //
                    // The default assumption is that the block is light/background. Since no estimate for
                    // the level of dark pixels exists locally, use half the min for the block.
                    average = min as u32 / 2;

                    if y > 0 && x > 0 {
                        // Correct the "white background" assumption for blocks that have neighbors by comparing
                        // the pixels in this block to the previously calculated black points. This is based on
                        // the fact that dark barcode symbology is always surrounded by some amount of light
                        // background for which reasonable black point estimates were made. The bp estimated at
                        // the boundaries is used for the interior.

                        // The (min < bp) is arbitrary but works better than other heuristics that were tried.
                        let average_neighbor_black_point: u32 = (blackPoints[y as usize - 1]
                            [x as usize]
                            + (2 * blackPoints[y as usize][x as usize - 1])
                            + blackPoints[y as usize - 1][x as usize - 1])
                            / 4;
                        if (min as u32) < average_neighbor_black_point {
                            average = average_neighbor_black_point;
                        }
                    }
                }
                blackPoints[y as usize][x as usize] = average;
            }
        }
        blackPoints
    }
}