1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
/*
* Copyright 2009 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// package com.google.zxing.common;
// import com.google.zxing.Binarizer;
// import com.google.zxing.LuminanceSource;
// import com.google.zxing.NotFoundException;
use std::{borrow::Cow, rc::Rc};
use once_cell::unsync::OnceCell;
use crate::common::Result;
use crate::{Binarizer, LuminanceSource};
use super::{BitArray, BitMatrix, GlobalHistogramBinarizer};
/**
* This class implements a local thresholding algorithm, which while slower than the
* GlobalHistogramBinarizer, is fairly efficient for what it does. It is designed for
* high frequency images of barcodes with black data on white backgrounds. For this application,
* it does a much better job than a global blackpoint with severe shadows and gradients.
* However it tends to produce artifacts on lower frequency images and is therefore not
* a good general purpose binarizer for uses outside ZXing.
*
* This class extends GlobalHistogramBinarizer, using the older histogram approach for 1D readers,
* and the newer local approach for 2D readers. 1D decoding using a per-row histogram is already
* inherently local, and only fails for horizontal gradients. We can revisit that problem later,
* but for now it was not a win to use local blocks for 1D.
*
* This Binarizer is the default for the unit tests and the recommended class for library users.
*
* @author dswitkin@google.com (Daniel Switkin)
*/
pub struct HybridBinarizer {
//width: usize,
//height: usize,
//source: Box<dyn LuminanceSource>,
ghb: GlobalHistogramBinarizer,
black_matrix: OnceCell<BitMatrix>,
}
impl Binarizer for HybridBinarizer {
fn getLuminanceSource(&self) -> &Box<dyn LuminanceSource> {
self.ghb.getLuminanceSource()
}
fn getBlackRow(&self, y: usize) -> Result<Cow<BitArray>> {
self.ghb.getBlackRow(y)
}
/**
* Calculates the final BitMatrix once for all requests. This could be called once from the
* constructor instead, but there are some advantages to doing it lazily, such as making
* profiling easier, and not doing heavy lifting when callers don't expect it.
*/
fn getBlackMatrix(&self) -> Result<&BitMatrix> {
let matrix = self
.black_matrix
.get_or_try_init(|| Self::calculateBlackMatrix(&self.ghb))?;
Ok(matrix)
}
fn createBinarizer(&self, source: Box<dyn LuminanceSource>) -> Rc<dyn Binarizer> {
Rc::new(HybridBinarizer::new(source))
}
fn getWidth(&self) -> usize {
self.ghb.getWidth()
}
fn getHeight(&self) -> usize {
self.ghb.getHeight()
}
}
impl HybridBinarizer {
// This class uses 5x5 blocks to compute local luminance, where each block is 8x8 pixels.
// So this is the smallest dimension in each axis we can accept.
const BLOCK_SIZE_POWER: usize = 3;
const BLOCK_SIZE: usize = 1 << HybridBinarizer::BLOCK_SIZE_POWER; // ...0100...00
const BLOCK_SIZE_MASK: usize = HybridBinarizer::BLOCK_SIZE - 1; // ...0011...11
const MINIMUM_DIMENSION: usize = HybridBinarizer::BLOCK_SIZE * 5;
const MIN_DYNAMIC_RANGE: usize = 24;
pub fn new(source: Box<dyn LuminanceSource>) -> Self {
let ghb = GlobalHistogramBinarizer::new(source);
Self {
black_matrix: OnceCell::new(),
ghb,
}
}
fn calculateBlackMatrix(ghb: &GlobalHistogramBinarizer) -> Result<BitMatrix> {
// let matrix;
let source = ghb.getLuminanceSource();
let width = source.getWidth();
let height = source.getHeight();
let matrix = if width >= HybridBinarizer::MINIMUM_DIMENSION
&& height >= HybridBinarizer::MINIMUM_DIMENSION
{
let luminances = source.getMatrix();
let mut sub_width = width >> HybridBinarizer::BLOCK_SIZE_POWER;
if (width & HybridBinarizer::BLOCK_SIZE_MASK) != 0 {
sub_width += 1;
}
let mut sub_height = height >> HybridBinarizer::BLOCK_SIZE_POWER;
if (height & HybridBinarizer::BLOCK_SIZE_MASK) != 0 {
sub_height += 1;
}
let black_points = Self::calculateBlackPoints(
&luminances,
sub_width as u32,
sub_height as u32,
width as u32,
height as u32,
);
let mut new_matrix = BitMatrix::new(width as u32, height as u32)?;
Self::calculateThresholdForBlock(
&luminances,
sub_width as u32,
sub_height as u32,
width as u32,
height as u32,
&black_points,
&mut new_matrix,
);
Ok(new_matrix)
} else {
// If the image is too small, fall back to the global histogram approach.
let m = ghb.getBlackMatrix()?;
Ok(m.clone())
};
// dbg!(matrix.to_string());
matrix
}
/**
* For each block in the image, calculate the average black point using a 5x5 grid
* of the blocks around it. Also handles the corner cases (fractional blocks are computed based
* on the last pixels in the row/column which are also used in the previous block).
*/
fn calculateThresholdForBlock(
luminances: &[u8],
sub_width: u32,
sub_height: u32,
width: u32,
height: u32,
black_points: &[Vec<u32>],
matrix: &mut BitMatrix,
) {
let maxYOffset = height - HybridBinarizer::BLOCK_SIZE as u32;
let maxXOffset = width - HybridBinarizer::BLOCK_SIZE as u32;
for y in 0..sub_height {
// for (int y = 0; y < subHeight; y++) {
let mut yoffset = y << HybridBinarizer::BLOCK_SIZE_POWER;
if yoffset > maxYOffset {
yoffset = maxYOffset;
}
let top = Self::cap(y, sub_height - 3);
for x in 0..sub_width {
// for (int x = 0; x < subWidth; x++) {
let mut xoffset = x << HybridBinarizer::BLOCK_SIZE_POWER;
if xoffset > maxXOffset {
xoffset = maxXOffset;
}
let left = Self::cap(x, sub_width - 3);
let mut sum = 0;
for z in -2..=2 {
// for (int z = -2; z <= 2; z++) {
let blackRow = &black_points[(top as i32 + z) as usize];
sum += blackRow[(left - 2) as usize]
+ blackRow[(left - 1) as usize]
+ blackRow[left as usize]
+ blackRow[(left + 1) as usize]
+ blackRow[(left + 2) as usize];
}
let average = sum / 25;
Self::thresholdBlock(luminances, xoffset, yoffset, average, width, matrix);
}
}
}
#[inline(always)]
fn cap(value: u32, max: u32) -> u32 {
if value < 2 {
2
} else {
value.min(max)
}
}
/**
* Applies a single threshold to a block of pixels.
*/
fn thresholdBlock(
luminances: &[u8],
xoffset: u32,
yoffset: u32,
threshold: u32,
stride: u32,
matrix: &mut BitMatrix,
) {
let mut offset = yoffset * stride + xoffset;
for y in 0..HybridBinarizer::BLOCK_SIZE {
// for (int y = 0, offset = yoffset * stride + xoffset; y < HybridBinarizer::BLOCK_SIZE; y++, offset += stride) {
for x in 0..HybridBinarizer::BLOCK_SIZE {
// for (int x = 0; x < HybridBinarizer::BLOCK_SIZE; x++) {
// Comparison needs to be <= so that black == 0 pixels are black even if the threshold is 0.
if luminances[offset as usize + x] as u32 <= threshold {
matrix.set(xoffset + x as u32, yoffset + y as u32);
}
}
offset += stride;
}
}
/**
* Calculates a single black point for each block of pixels and saves it away.
* See the following thread for a discussion of this algorithm:
* http://groups.google.com/group/zxing/browse_thread/thread/d06efa2c35a7ddc0
*/
fn calculateBlackPoints(
luminances: &[u8],
subWidth: u32,
subHeight: u32,
width: u32,
height: u32,
) -> Vec<Vec<u32>> {
let maxYOffset = height as usize - HybridBinarizer::BLOCK_SIZE;
let maxXOffset = width as usize - HybridBinarizer::BLOCK_SIZE;
let mut blackPoints = vec![vec![0; subWidth as usize]; subHeight as usize];
for y in 0..subHeight {
// for (int y = 0; y < subHeight; y++) {
let mut yoffset = y << HybridBinarizer::BLOCK_SIZE_POWER;
if yoffset > maxYOffset as u32 {
yoffset = maxYOffset as u32;
}
for x in 0..subWidth {
// for (int x = 0; x < subWidth; x++) {
let mut xoffset = x << HybridBinarizer::BLOCK_SIZE_POWER;
if xoffset > maxXOffset as u32 {
xoffset = maxXOffset as u32;
}
let mut sum: u32 = 0;
let mut min = 0xff;
let mut max = 0;
let mut offset = yoffset * width + xoffset;
let mut yy = 0;
while yy < HybridBinarizer::BLOCK_SIZE {
// for (int yy = 0, offset = yoffset * width + xoffset; yy < HybridBinarizer::BLOCK_SIZE; yy++, offset += width) {
for xx in 0..HybridBinarizer::BLOCK_SIZE {
// for (int xx = 0; xx < HybridBinarizer::BLOCK_SIZE; xx++) {
let pixel = luminances[offset as usize + xx];
sum += pixel as u32;
// still looking for good contrast
if pixel < min {
min = pixel;
}
if pixel > max {
max = pixel;
}
}
// short-circuit min/max tests once dynamic range is met
if (max - min) as usize > HybridBinarizer::MIN_DYNAMIC_RANGE {
// finish the rest of the rows quickly
offset += width;
yy += 1;
while yy < HybridBinarizer::BLOCK_SIZE {
// for (yy++, offset += width; yy < HybridBinarizer::BLOCK_SIZE; yy++, offset += width) {
for xx in 0..HybridBinarizer::BLOCK_SIZE {
// for (int xx = 0; xx < BLOCK_SIZE; xx++) {
sum += luminances[offset as usize + xx] as u32;
}
yy += 1;
offset += width;
}
break;
}
yy += 1;
offset += width;
}
// The default estimate is the average of the values in the block.
let mut average = sum >> (HybridBinarizer::BLOCK_SIZE_POWER * 2);
if (max - min) as usize <= HybridBinarizer::MIN_DYNAMIC_RANGE {
// If variation within the block is low, assume this is a block with only light or only
// dark pixels. In that case we do not want to use the average, as it would divide this
// low contrast area into black and white pixels, essentially creating data out of noise.
//
// The default assumption is that the block is light/background. Since no estimate for
// the level of dark pixels exists locally, use half the min for the block.
average = min as u32 / 2;
if y > 0 && x > 0 {
// Correct the "white background" assumption for blocks that have neighbors by comparing
// the pixels in this block to the previously calculated black points. This is based on
// the fact that dark barcode symbology is always surrounded by some amount of light
// background for which reasonable black point estimates were made. The bp estimated at
// the boundaries is used for the interior.
// The (min < bp) is arbitrary but works better than other heuristics that were tried.
let average_neighbor_black_point: u32 = (blackPoints[y as usize - 1]
[x as usize]
+ (2 * blackPoints[y as usize][x as usize - 1])
+ blackPoints[y as usize - 1][x as usize - 1])
/ 4;
if (min as u32) < average_neighbor_black_point {
average = average_neighbor_black_point;
}
}
}
blackPoints[y as usize][x as usize] = average;
}
}
blackPoints
}
}