1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
/*
 * Copyright 2009 ZXing authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

//package com.google.zxing;

use crate::{Exceptions, LuminanceSource};

/**
 * This class is used to help decode images from files which arrive as RGB data from
 * an ARGB pixel array. It does not support rotation.
 *
 * @author dswitkin@google.com (Daniel Switkin)
 * @author Betaminos
 */
#[derive(Debug, Clone)]
pub struct RGBLuminanceSource {
    luminances: Vec<u8>,
    dataWidth: usize,
    dataHeight: usize,
    left: usize,
    top: usize,
    width: usize,
    height: usize,
    invert: bool,
}

impl LuminanceSource for RGBLuminanceSource {
    fn getRow(&self, y: usize) -> Vec<u8> {
        if y >= self.getHeight() {
            panic!("Requested row is outside the image: {}", y);
        }
        let width = self.getWidth();

        let offset = (y + self.top) * self.dataWidth + self.left;

        let mut row = vec![0; width];

        row[..width].clone_from_slice(&self.luminances[offset..offset + width]);
        //System.arraycopy(self.luminances, offset, row, 0, width);
        if self.invert {
            row = self.invert_block_of_bytes(row);
        }
        row
    }

    fn getMatrix(&self) -> Vec<u8> {
        let width = self.getWidth();
        let height = self.getHeight();

        // If the caller asks for the entire underlying image, save the copy and give them the
        // original data. The docs specifically warn that result.length must be ignored.
        if width == self.dataWidth && height == self.dataHeight {
            let mut z = self.luminances.clone();
            if self.invert {
                z = self.invert_block_of_bytes(z);
            }
            return z;
        }

        let area = width * height;
        let mut matrix = vec![0; area];
        let mut inputOffset = self.top * self.dataWidth + self.left;

        // If the width matches the full width of the underlying data, perform a single copy.
        if width == self.dataWidth {
            matrix[..area].clone_from_slice(&self.luminances[inputOffset..area + inputOffset]);
            //System.arraycopy(self.luminances, inputOffset, matrix, 0, area);
            if self.invert {
                matrix = self.invert_block_of_bytes(matrix);
            }
            return matrix;
        }

        // Otherwise copy one cropped row at a time.
        for y in 0..height {
            //for (int y = 0; y < height; y++) {
            let outputOffset = y * width;
            matrix[outputOffset..width + outputOffset]
                .clone_from_slice(&self.luminances[inputOffset..width + inputOffset]);
            //System.arraycopy(luminances, inputOffset, matrix, outputOffset, width);
            inputOffset += self.dataWidth;
        }

        if self.invert {
            matrix = self.invert_block_of_bytes(matrix);
        }
        matrix
    }

    fn getWidth(&self) -> usize {
        self.width
    }

    fn getHeight(&self) -> usize {
        self.height
    }

    fn isCropSupported(&self) -> bool {
        true
    }

    fn crop(
        &self,
        left: usize,
        top: usize,
        width: usize,
        height: usize,
    ) -> Result<Box<dyn LuminanceSource>, Exceptions> {
        match RGBLuminanceSource::new_complex(
            &self.luminances,
            self.dataWidth,
            self.dataHeight,
            self.left + left,
            self.top + top,
            width,
            height,
        ) {
            Ok(crop) => Ok(Box::new(crop)),
            Err(_error) => Err(Exceptions::UnsupportedOperationException(None)),
        }
    }

    fn invert(&mut self) {
        self.invert = !self.invert;
    }
}

impl RGBLuminanceSource {
    pub fn new_with_width_height_pixels(width: usize, height: usize, pixels: &[u32]) -> Self {
        //super(width, height);

        let dataWidth = width;
        let dataHeight = height;
        let left = 0;
        let top = 0;

        // In order to measure pure decoding speed, we convert the entire image to a greyscale array
        // up front, which is the same as the Y channel of the YUVLuminanceSource in the real app.
        //
        // Total number of pixels suffices, can ignore shape
        let size = width * height;
        let mut luminances: Vec<u8> = vec![0; size];
        for offset in 0..size {
            //for (int offset = 0; offset < size; offset++) {
            let pixel = pixels[offset];
            let r = (pixel >> 16) & 0xff; // red
            let g2 = (pixel >> 7) & 0x1fe; // 2 * green
            let b = pixel & 0xff; // blue
                                  // Calculate green-favouring average cheaply
            luminances[offset] = ((r + g2 + b) / 4).try_into().unwrap();
        }
        Self {
            luminances,
            dataWidth,
            dataHeight,
            left,
            top,
            width,
            height,
            invert: false,
        }
    }

    fn new_complex(
        pixels: &[u8],
        data_width: usize,
        data_height: usize,
        left: usize,
        top: usize,
        width: usize,
        height: usize,
    ) -> Result<Self, Exceptions> {
        if left + width > data_width || top + height > data_height {
            return Err(Exceptions::IllegalArgumentException(Some(
                "Crop rectangle does not fit within image data.".to_owned(),
            )));
        }
        Ok(Self {
            luminances: pixels.to_owned(),
            dataWidth: data_width,
            dataHeight: data_height,
            left,
            top,
            width,
            height,
            invert: false,
        })
    }
}