1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/*
* Copyright 2008 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
use super::{OneDReader, UPCEANReader, L_AND_G_PATTERNS};
use crate::{BarcodeFormat, Exceptions};
use rxing_one_d_proc_derive::{EANReader, OneDReader};
/**
* <p>Implements decoding of the UPC-E format.</p>
* <p><a href="http://www.barcodeisland.com/upce.phtml">This</a> is a great reference for
* UPC-E information.</p>
*
* @author Sean Owen
*/
#[derive(OneDReader, EANReader, Default)]
pub struct UPCEReader;
impl UPCEANReader for UPCEReader {
fn getBarcodeFormat(&self) -> crate::BarcodeFormat {
BarcodeFormat::UPC_E
}
fn decodeMiddle(
&self,
row: &crate::common::BitArray,
startRange: &[usize; 2],
resultString: &mut String,
) -> Result<usize, Exceptions> {
let mut counters = [0_u32; 4]; //decodeMiddleCounters;
// counters[0] = 0;
// counters[1] = 0;
// counters[2] = 0;
// counters[3] = 0;
let end = row.getSize();
let mut rowOffset = startRange[1];
let mut lgPatternFound = 0;
let mut x = 0;
while x < 6 && rowOffset < end {
// for (int x = 0; x < 6 && rowOffset < end; x++) {
let bestMatch = self.decodeDigit(row, &mut counters, rowOffset, &L_AND_G_PATTERNS)?;
resultString.push(char::from_u32('0' as u32 + bestMatch as u32 % 10).unwrap());
// for (int counter : counters) {
// rowOffset += counter;
// }
rowOffset += counters.iter().sum::<u32>() as usize;
if bestMatch >= 10 {
lgPatternFound |= 1 << (5 - x);
}
x += 1;
}
Self::determineNumSysAndCheckDigit(resultString, lgPatternFound)?;
Ok(rowOffset)
}
fn checkChecksum(&self, s: &str) -> Result<bool, Exceptions> {
self.checkStandardUPCEANChecksum(&convertUPCEtoUPCA(s))
}
fn decodeEnd(
&self,
row: &crate::common::BitArray,
endStart: usize,
) -> Result<[usize; 2], Exceptions> {
self.findGuardPattern(row, endStart, true, &Self::MIDDLE_END_PATTERN)
}
}
impl UPCEReader {
/**
* The pattern that marks the middle, and end, of a UPC-E pattern.
* There is no "second half" to a UPC-E barcode.
*/
pub const MIDDLE_END_PATTERN: [u32; 6] = [1, 1, 1, 1, 1, 1];
// For an UPC-E barcode, the final digit is represented by the parities used
// to encode the middle six digits, according to the table below.
//
// Parity of next 6 digits
// Digit 0 1 2 3 4 5
// 0 Even Even Even Odd Odd Odd
// 1 Even Even Odd Even Odd Odd
// 2 Even Even Odd Odd Even Odd
// 3 Even Even Odd Odd Odd Even
// 4 Even Odd Even Even Odd Odd
// 5 Even Odd Odd Even Even Odd
// 6 Even Odd Odd Odd Even Even
// 7 Even Odd Even Odd Even Odd
// 8 Even Odd Even Odd Odd Even
// 9 Even Odd Odd Even Odd Even
//
// The encoding is represented by the following array, which is a bit pattern
// using Odd = 0 and Even = 1. For example, 5 is represented by:
//
// Odd Even Even Odd Odd Even
// in binary:
// 0 1 1 0 0 1 == 0x19
//
/**
* See {@link #L_AND_G_PATTERNS}; these values similarly represent patterns of
* even-odd parity encodings of digits that imply both the number system (0 or 1)
* used, and the check digit.
*/
pub const NUMSYS_AND_CHECK_DIGIT_PATTERNS: [[usize; 10]; 2] = [
[0x38, 0x34, 0x32, 0x31, 0x2C, 0x26, 0x23, 0x2A, 0x29, 0x25],
[0x07, 0x0B, 0x0D, 0x0E, 0x13, 0x19, 0x1C, 0x15, 0x16, 0x1A],
];
fn determineNumSysAndCheckDigit(
resultString: &mut String,
lgPatternFound: usize,
) -> Result<(), Exceptions> {
for numSys in 0..=1 {
// for (int numSys = 0; numSys <= 1; numSys++) {
for d in 0..10 {
// for (int d = 0; d < 10; d++) {
if lgPatternFound == Self::NUMSYS_AND_CHECK_DIGIT_PATTERNS[numSys][d] {
resultString.insert(0, char::from_u32('0' as u32 + numSys as u32).unwrap());
resultString.push(char::from_u32('0' as u32 + d as u32).unwrap());
return Ok(());
}
}
}
Err(Exceptions::NotFoundException(None))
}
}
/**
* Expands a UPC-E value back into its full, equivalent UPC-A code value.
*
* @param upce UPC-E code as string of digits
* @return equivalent UPC-A code as string of digits
*/
pub fn convertUPCEtoUPCA(upce: &str) -> String {
let upceChars = &upce[1..7]; //['0';6];//new char[6];
//upce.getChars(1, 7, upceChars, 0);
let mut result = String::with_capacity(12); //new StringBuilder(12);
result.push(upce.chars().next().unwrap());
let lastChar = upceChars.chars().nth(5).unwrap();
match lastChar {
'0' | '1' | '2' => {
result.push_str(&upceChars[0..2]);
// result.push(upceChars, 0, 2);
result.push(lastChar);
result.push_str("0000");
result.push_str(&upceChars[2..3 + 2]);
}
'3' => {
result.push_str(&upceChars[0..3]);
result.push_str("00000");
result.push_str(&upceChars[3..2 + 3]);
}
'4' => {
result.push_str(&upceChars[0..4]);
result.push_str("00000");
result.push(upceChars.chars().nth(4).unwrap());
}
_ => {
result.push_str(&upceChars[0..5]);
result.push_str("0000");
result.push(lastChar);
}
}
// Only append check digit in conversion if supplied
if upce.chars().count() >= 8 {
result.push(upce.chars().nth(7).unwrap());
}
result
}