ruvector_sona/
reasoning_bank.rs

1//! ReasoningBank - Pattern storage and extraction for SONA
2//!
3//! Implements trajectory clustering using K-means++ for pattern discovery.
4
5use crate::types::{LearnedPattern, PatternType, QueryTrajectory};
6use serde::{Deserialize, Serialize};
7use std::collections::HashMap;
8
9/// ReasoningBank configuration
10#[derive(Clone, Debug, Serialize, Deserialize)]
11pub struct PatternConfig {
12    /// Number of clusters for K-means++
13    pub k_clusters: usize,
14    /// Embedding dimension
15    pub embedding_dim: usize,
16    /// Maximum K-means iterations
17    pub max_iterations: usize,
18    /// Convergence threshold
19    pub convergence_threshold: f32,
20    /// Minimum cluster size to keep
21    pub min_cluster_size: usize,
22    /// Maximum trajectories to store
23    pub max_trajectories: usize,
24    /// Quality threshold for pattern
25    pub quality_threshold: f32,
26}
27
28impl Default for PatternConfig {
29    fn default() -> Self {
30        // OPTIMIZED DEFAULTS based on @ruvector/sona v0.1.1 benchmarks:
31        // - 100 clusters = 1.3ms search vs 50 clusters = 3.0ms (2.3x faster)
32        // - Quality threshold 0.3 balances learning vs noise filtering
33        Self {
34            k_clusters: 100,           // OPTIMIZED: 2.3x faster search (1.3ms vs 3.0ms)
35            embedding_dim: 256,
36            max_iterations: 100,
37            convergence_threshold: 0.001,
38            min_cluster_size: 5,
39            max_trajectories: 10000,
40            quality_threshold: 0.3,    // OPTIMIZED: Lower threshold for more learning
41        }
42    }
43}
44
45/// ReasoningBank for pattern storage and extraction
46#[derive(Clone, Debug)]
47pub struct ReasoningBank {
48    /// Configuration
49    config: PatternConfig,
50    /// Stored trajectories
51    trajectories: Vec<TrajectoryEntry>,
52    /// Extracted patterns
53    patterns: HashMap<u64, LearnedPattern>,
54    /// Next pattern ID
55    next_pattern_id: u64,
56    /// Pattern index (embedding -> pattern_id)
57    pattern_index: Vec<(Vec<f32>, u64)>,
58}
59
60/// Internal trajectory entry with embedding
61#[derive(Clone, Debug)]
62struct TrajectoryEntry {
63    /// Trajectory embedding (query + avg activations)
64    embedding: Vec<f32>,
65    /// Quality score
66    quality: f32,
67    /// Cluster assignment
68    cluster: Option<usize>,
69    /// Original trajectory ID
70    trajectory_id: u64,
71}
72
73impl ReasoningBank {
74    /// Create new ReasoningBank
75    pub fn new(config: PatternConfig) -> Self {
76        Self {
77            config,
78            trajectories: Vec::new(),
79            patterns: HashMap::new(),
80            next_pattern_id: 0,
81            pattern_index: Vec::new(),
82        }
83    }
84
85    /// Add trajectory to bank
86    pub fn add_trajectory(&mut self, trajectory: &QueryTrajectory) {
87        // Compute embedding from trajectory
88        let embedding = self.compute_embedding(trajectory);
89
90        let entry = TrajectoryEntry {
91            embedding,
92            quality: trajectory.final_quality,
93            cluster: None,
94            trajectory_id: trajectory.id,
95        };
96
97        // Enforce capacity
98        if self.trajectories.len() >= self.config.max_trajectories {
99            // Remove oldest entries
100            let to_remove = self.trajectories.len() - self.config.max_trajectories + 1;
101            self.trajectories.drain(0..to_remove);
102        }
103
104        self.trajectories.push(entry);
105    }
106
107    /// Compute embedding from trajectory
108    fn compute_embedding(&self, trajectory: &QueryTrajectory) -> Vec<f32> {
109        let dim = self.config.embedding_dim;
110        let mut embedding = vec![0.0f32; dim];
111
112        // Start with query embedding
113        let query_len = trajectory.query_embedding.len().min(dim);
114        embedding[..query_len].copy_from_slice(&trajectory.query_embedding[..query_len]);
115
116        // Average in step activations (weighted by reward)
117        if !trajectory.steps.is_empty() {
118            let mut total_reward = 0.0f32;
119
120            for step in &trajectory.steps {
121                let weight = step.reward.max(0.0);
122                total_reward += weight;
123
124                for (i, &act) in step.activations.iter().enumerate() {
125                    if i < dim {
126                        embedding[i] += act * weight;
127                    }
128                }
129            }
130
131            if total_reward > 0.0 {
132                for e in &mut embedding {
133                    *e /= total_reward + 1.0; // +1 for query contribution
134                }
135            }
136        }
137
138        // L2 normalize
139        let norm: f32 = embedding.iter().map(|x| x * x).sum::<f32>().sqrt();
140        if norm > 1e-8 {
141            for e in &mut embedding {
142                *e /= norm;
143            }
144        }
145
146        embedding
147    }
148
149    /// Extract patterns using K-means++
150    pub fn extract_patterns(&mut self) -> Vec<LearnedPattern> {
151        if self.trajectories.is_empty() {
152            return Vec::new();
153        }
154
155        let k = self.config.k_clusters.min(self.trajectories.len());
156        if k == 0 {
157            return Vec::new();
158        }
159
160        // K-means++ initialization
161        let centroids = self.kmeans_plus_plus_init(k);
162
163        // Run K-means
164        let (final_centroids, assignments) = self.run_kmeans(centroids);
165
166        // Create patterns from clusters
167        let mut patterns = Vec::new();
168
169        for (cluster_idx, centroid) in final_centroids.into_iter().enumerate() {
170            // Collect cluster members
171            let members: Vec<_> = self.trajectories.iter()
172                .enumerate()
173                .filter(|(i, _)| assignments.get(*i) == Some(&cluster_idx))
174                .map(|(_, t)| t)
175                .collect();
176
177            if members.len() < self.config.min_cluster_size {
178                continue;
179            }
180
181            // Compute cluster statistics
182            let cluster_size = members.len();
183            let total_weight: f32 = members.iter().map(|t| t.quality).sum();
184            let avg_quality = total_weight / cluster_size as f32;
185
186            if avg_quality < self.config.quality_threshold {
187                continue;
188            }
189
190            let pattern_id = self.next_pattern_id;
191            self.next_pattern_id += 1;
192
193            let pattern = LearnedPattern {
194                id: pattern_id,
195                centroid,
196                cluster_size,
197                total_weight,
198                avg_quality,
199                created_at: std::time::SystemTime::now()
200                    .duration_since(std::time::UNIX_EPOCH)
201                    .unwrap_or_default()
202                    .as_secs(),
203                last_accessed: std::time::SystemTime::now()
204                    .duration_since(std::time::UNIX_EPOCH)
205                    .unwrap_or_default()
206                    .as_secs(),
207                access_count: 0,
208                pattern_type: PatternType::General,
209            };
210
211            self.patterns.insert(pattern_id, pattern.clone());
212            self.pattern_index.push((pattern.centroid.clone(), pattern_id));
213            patterns.push(pattern);
214        }
215
216        // Update trajectory cluster assignments
217        for (i, cluster) in assignments.into_iter().enumerate() {
218            if i < self.trajectories.len() {
219                self.trajectories[i].cluster = Some(cluster);
220            }
221        }
222
223        patterns
224    }
225
226    /// K-means++ initialization
227    fn kmeans_plus_plus_init(&self, k: usize) -> Vec<Vec<f32>> {
228        let mut centroids = Vec::with_capacity(k);
229        let n = self.trajectories.len();
230
231        if n == 0 || k == 0 {
232            return centroids;
233        }
234
235        // First centroid: random (use deterministic selection for reproducibility)
236        let first_idx = 0;
237        centroids.push(self.trajectories[first_idx].embedding.clone());
238
239        // Remaining centroids: D^2 weighting
240        for _ in 1..k {
241            // Compute distances to nearest centroid
242            let mut distances: Vec<f32> = self.trajectories.iter()
243                .map(|t| {
244                    centroids.iter()
245                        .map(|c| self.squared_distance(&t.embedding, c))
246                        .fold(f32::MAX, f32::min)
247                })
248                .collect();
249
250            // Normalize to probabilities
251            let total: f32 = distances.iter().sum();
252            if total > 0.0 {
253                for d in &mut distances {
254                    *d /= total;
255                }
256            }
257
258            // Select next centroid (deterministic: highest distance)
259            let (next_idx, _) = distances.iter()
260                .enumerate()
261                .max_by(|a, b| a.1.partial_cmp(b.1).unwrap())
262                .unwrap_or((0, &0.0));
263
264            centroids.push(self.trajectories[next_idx].embedding.clone());
265        }
266
267        centroids
268    }
269
270    /// Run K-means algorithm
271    fn run_kmeans(&self, mut centroids: Vec<Vec<f32>>) -> (Vec<Vec<f32>>, Vec<usize>) {
272        let n = self.trajectories.len();
273        let k = centroids.len();
274        let dim = self.config.embedding_dim;
275
276        let mut assignments = vec![0usize; n];
277
278        for _iter in 0..self.config.max_iterations {
279            // Assign points to nearest centroid
280            let mut changed = false;
281            for (i, t) in self.trajectories.iter().enumerate() {
282                let (nearest, _) = centroids.iter()
283                    .enumerate()
284                    .map(|(j, c)| (j, self.squared_distance(&t.embedding, c)))
285                    .min_by(|a, b| a.1.partial_cmp(&b.1).unwrap())
286                    .unwrap_or((0, 0.0));
287
288                if assignments[i] != nearest {
289                    assignments[i] = nearest;
290                    changed = true;
291                }
292            }
293
294            if !changed {
295                break;
296            }
297
298            // Update centroids
299            let mut new_centroids = vec![vec![0.0f32; dim]; k];
300            let mut counts = vec![0usize; k];
301
302            for (i, t) in self.trajectories.iter().enumerate() {
303                let cluster = assignments[i];
304                counts[cluster] += 1;
305                for (j, &e) in t.embedding.iter().enumerate() {
306                    new_centroids[cluster][j] += e;
307                }
308            }
309
310            // Average and check convergence
311            let mut max_shift = 0.0f32;
312            for (i, new_c) in new_centroids.iter_mut().enumerate() {
313                if counts[i] > 0 {
314                    for e in new_c.iter_mut() {
315                        *e /= counts[i] as f32;
316                    }
317                    let shift = self.squared_distance(new_c, &centroids[i]).sqrt();
318                    max_shift = max_shift.max(shift);
319                }
320            }
321
322            centroids = new_centroids;
323
324            if max_shift < self.config.convergence_threshold {
325                break;
326            }
327        }
328
329        (centroids, assignments)
330    }
331
332    /// Squared Euclidean distance
333    fn squared_distance(&self, a: &[f32], b: &[f32]) -> f32 {
334        a.iter()
335            .zip(b.iter())
336            .map(|(&x, &y)| (x - y) * (x - y))
337            .sum()
338    }
339
340    /// Find similar patterns
341    pub fn find_similar(&self, query: &[f32], k: usize) -> Vec<&LearnedPattern> {
342        let mut scored: Vec<_> = self.patterns.values()
343            .map(|p| (p, p.similarity(query)))
344            .collect();
345
346        scored.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
347
348        scored.into_iter()
349            .take(k)
350            .map(|(p, _)| p)
351            .collect()
352    }
353
354    /// Get pattern by ID
355    pub fn get_pattern(&self, id: u64) -> Option<&LearnedPattern> {
356        self.patterns.get(&id)
357    }
358
359    /// Get mutable pattern by ID
360    pub fn get_pattern_mut(&mut self, id: u64) -> Option<&mut LearnedPattern> {
361        self.patterns.get_mut(&id)
362    }
363
364    /// Get trajectory count
365    pub fn trajectory_count(&self) -> usize {
366        self.trajectories.len()
367    }
368
369    /// Get pattern count
370    pub fn pattern_count(&self) -> usize {
371        self.patterns.len()
372    }
373
374    /// Clear trajectories (keep patterns)
375    pub fn clear_trajectories(&mut self) {
376        self.trajectories.clear();
377    }
378
379    /// Prune low-quality patterns
380    pub fn prune_patterns(&mut self, min_quality: f32, min_accesses: u32, max_age_secs: u64) {
381        let to_remove: Vec<u64> = self.patterns.iter()
382            .filter(|(_, p)| p.should_prune(min_quality, min_accesses, max_age_secs))
383            .map(|(id, _)| *id)
384            .collect();
385
386        for id in to_remove {
387            self.patterns.remove(&id);
388        }
389
390        // Update index
391        self.pattern_index.retain(|(_, id)| self.patterns.contains_key(id));
392    }
393
394    /// Get all patterns for export
395    pub fn get_all_patterns(&self) -> Vec<LearnedPattern> {
396        self.patterns.values().cloned().collect()
397    }
398
399    /// Consolidate similar patterns
400    pub fn consolidate(&mut self, similarity_threshold: f32) {
401        let pattern_ids: Vec<u64> = self.patterns.keys().copied().collect();
402        let mut merged = Vec::new();
403
404        for i in 0..pattern_ids.len() {
405            for j in i+1..pattern_ids.len() {
406                let id1 = pattern_ids[i];
407                let id2 = pattern_ids[j];
408
409                if merged.contains(&id1) || merged.contains(&id2) {
410                    continue;
411                }
412
413                if let (Some(p1), Some(p2)) = (self.patterns.get(&id1), self.patterns.get(&id2)) {
414                    let sim = p1.similarity(&p2.centroid);
415                    if sim > similarity_threshold {
416                        // Merge p2 into p1
417                        let merged_pattern = p1.merge(p2);
418                        self.patterns.insert(id1, merged_pattern);
419                        merged.push(id2);
420                    }
421                }
422            }
423        }
424
425        // Remove merged patterns
426        for id in merged {
427            self.patterns.remove(&id);
428        }
429
430        // Update index
431        self.pattern_index.retain(|(_, id)| self.patterns.contains_key(id));
432    }
433}
434
435#[cfg(test)]
436mod tests {
437    use super::*;
438
439    fn make_trajectory(id: u64, embedding: Vec<f32>, quality: f32) -> QueryTrajectory {
440        let mut t = QueryTrajectory::new(id, embedding);
441        t.finalize(quality, 1000);
442        t
443    }
444
445    #[test]
446    fn test_bank_creation() {
447        let bank = ReasoningBank::new(PatternConfig::default());
448        assert_eq!(bank.trajectory_count(), 0);
449        assert_eq!(bank.pattern_count(), 0);
450    }
451
452    #[test]
453    fn test_add_trajectory() {
454        let config = PatternConfig {
455            embedding_dim: 4,
456            ..Default::default()
457        };
458        let mut bank = ReasoningBank::new(config);
459
460        let t = make_trajectory(1, vec![0.1, 0.2, 0.3, 0.4], 0.8);
461        bank.add_trajectory(&t);
462
463        assert_eq!(bank.trajectory_count(), 1);
464    }
465
466    #[test]
467    fn test_extract_patterns() {
468        let config = PatternConfig {
469            embedding_dim: 4,
470            k_clusters: 2,
471            min_cluster_size: 2,
472            quality_threshold: 0.0,
473            ..Default::default()
474        };
475        let mut bank = ReasoningBank::new(config);
476
477        // Add clustered trajectories
478        for i in 0..5 {
479            let t = make_trajectory(i, vec![1.0, 0.0, 0.0, 0.0], 0.8);
480            bank.add_trajectory(&t);
481        }
482        for i in 5..10 {
483            let t = make_trajectory(i, vec![0.0, 1.0, 0.0, 0.0], 0.7);
484            bank.add_trajectory(&t);
485        }
486
487        let patterns = bank.extract_patterns();
488        assert!(!patterns.is_empty());
489    }
490
491    #[test]
492    fn test_find_similar() {
493        let config = PatternConfig {
494            embedding_dim: 4,
495            k_clusters: 2,
496            min_cluster_size: 2,
497            quality_threshold: 0.0,
498            ..Default::default()
499        };
500        let mut bank = ReasoningBank::new(config);
501
502        for i in 0..10 {
503            let emb = if i < 5 {
504                vec![1.0, 0.0, 0.0, 0.0]
505            } else {
506                vec![0.0, 1.0, 0.0, 0.0]
507            };
508            bank.add_trajectory(&make_trajectory(i, emb, 0.8));
509        }
510
511        bank.extract_patterns();
512
513        let query = vec![0.9, 0.1, 0.0, 0.0];
514        let similar = bank.find_similar(&query, 1);
515        assert!(!similar.is_empty());
516    }
517
518    #[test]
519    fn test_consolidate() {
520        let config = PatternConfig {
521            embedding_dim: 4,
522            k_clusters: 3,
523            min_cluster_size: 1,
524            quality_threshold: 0.0,
525            ..Default::default()
526        };
527        let mut bank = ReasoningBank::new(config);
528
529        // Create very similar trajectories
530        for i in 0..9 {
531            let emb = vec![1.0 + (i as f32 * 0.001), 0.0, 0.0, 0.0];
532            bank.add_trajectory(&make_trajectory(i, emb, 0.8));
533        }
534
535        bank.extract_patterns();
536        let before = bank.pattern_count();
537
538        bank.consolidate(0.99);
539        let after = bank.pattern_count();
540
541        assert!(after <= before);
542    }
543}