Expand description
Optimal Transport Algorithms
This module provides implementations of optimal transport distances and solvers:
- Sliced Wasserstein Distance: O(n log n) via random 1D projections
- Sinkhorn Algorithm: Log-stabilized entropic regularization
- Gromov-Wasserstein: Cross-space structure comparison
§Theory
Optimal transport measures the minimum “cost” to transform one probability distribution into another. The Wasserstein distance (Earth Mover’s Distance) is defined as:
W_p(μ, ν) = (inf_{γ ∈ Π(μ,ν)} ∫∫ c(x,y)^p dγ(x,y))^{1/p}
where Π(μ,ν) is the set of all couplings with marginals μ and ν.
§Use Cases in Vector Search
- Cross-lingual document retrieval (comparing embedding distributions)
- Image region matching (comparing feature distributions)
- Time series pattern matching
- Document similarity via word embedding distributions
Structs§
- Gromov
Wasserstein - Gromov-Wasserstein distance calculator
- Sinkhorn
Solver - Log-stabilized Sinkhorn solver for entropic optimal transport
- Sliced
Wasserstein - Sliced Wasserstein distance calculator
- Transport
Plan - Result of Sinkhorn algorithm
- Wasserstein
Config - Configuration for Wasserstein distance computation
Traits§
- Optimal
Transport - Trait for optimal transport distance computations