Module information_geometry

Module information_geometry 

Source
Expand description

Information Geometry

Information geometry treats probability distributions as points on a curved manifold, enabling geometry-aware optimization and analysis.

§Core Concepts

  • Fisher Information Matrix (FIM): Measures curvature of probability space
  • Natural Gradient: Gradient descent that respects the manifold geometry
  • K-FAC: Kronecker-factored approximation for efficient natural gradient
  1. Faster Index Optimization: 3-5x fewer iterations vs Adam
  2. Better Generalization: Follows geodesics in parameter space
  3. Stable Continual Learning: Information-aware regularization

§References

  • Amari & Nagaoka (2000): Methods of Information Geometry
  • Martens & Grosse (2015): Optimizing Neural Networks with K-FAC
  • Pascanu & Bengio (2013): Natural Gradient Works Efficiently in Learning

Structs§

FisherInformation
Fisher Information Matrix calculator
KFACApproximation
K-FAC approximation for full network
NaturalGradient
Natural gradient optimizer state