ruvector_math/spectral/
chebyshev.rs1use std::f64::consts::PI;
7
8#[derive(Debug, Clone)]
10pub struct ChebyshevPolynomial {
11 pub degree: usize,
13}
14
15impl ChebyshevPolynomial {
16 pub fn new(degree: usize) -> Self {
18 Self { degree }
19 }
20
21 pub fn eval(&self, x: f64) -> f64 {
24 if self.degree == 0 {
25 return 1.0;
26 }
27 if self.degree == 1 {
28 return x;
29 }
30
31 let mut t_prev = 1.0;
32 let mut t_curr = x;
33
34 for _ in 2..=self.degree {
35 let t_next = 2.0 * x * t_curr - t_prev;
36 t_prev = t_curr;
37 t_curr = t_next;
38 }
39
40 t_curr
41 }
42
43 pub fn eval_all(x: f64, max_degree: usize) -> Vec<f64> {
45 if max_degree == 0 {
46 return vec![1.0];
47 }
48
49 let mut result = Vec::with_capacity(max_degree + 1);
50 result.push(1.0);
51 result.push(x);
52
53 for k in 2..=max_degree {
54 let t_k = 2.0 * x * result[k - 1] - result[k - 2];
55 result.push(t_k);
56 }
57
58 result
59 }
60
61 pub fn nodes(n: usize) -> Vec<f64> {
63 (0..n)
64 .map(|k| ((2 * k + 1) as f64 * PI / (2 * n) as f64).cos())
65 .collect()
66 }
67
68 pub fn derivative(&self, x: f64) -> f64 {
70 if self.degree == 0 {
71 return 0.0;
72 }
73 if self.degree == 1 {
74 return 1.0;
75 }
76
77 let n = self.degree;
80 let mut u_prev = 1.0;
81 let mut u_curr = 2.0 * x;
82
83 for _ in 2..n {
84 let u_next = 2.0 * x * u_curr - u_prev;
85 u_prev = u_curr;
86 u_curr = u_next;
87 }
88
89 n as f64 * if n == 1 { u_prev } else { u_curr }
90 }
91}
92
93#[derive(Debug, Clone)]
96pub struct ChebyshevExpansion {
97 pub coefficients: Vec<f64>,
99}
100
101impl ChebyshevExpansion {
102 pub fn new(coefficients: Vec<f64>) -> Self {
104 Self { coefficients }
105 }
106
107 pub fn from_function<F: Fn(f64) -> f64>(f: F, degree: usize) -> Self {
109 let n = degree + 1;
110 let nodes = ChebyshevPolynomial::nodes(n);
111
112 let f_values: Vec<f64> = nodes.iter().map(|&x| f(x)).collect();
114
115 let mut coefficients = Vec::with_capacity(n);
117
118 for k in 0..n {
119 let mut c_k = 0.0;
120 for (j, &f_j) in f_values.iter().enumerate() {
121 let t_k_at_node = ChebyshevPolynomial::new(k).eval(nodes[j]);
122 c_k += f_j * t_k_at_node;
123 }
124 c_k *= 2.0 / n as f64;
125 if k == 0 {
126 c_k *= 0.5;
127 }
128 coefficients.push(c_k);
129 }
130
131 Self { coefficients }
132 }
133
134 pub fn heat_kernel(t: f64, degree: usize) -> Self {
137 Self::from_function(|x| {
138 let exponent = -t * (x + 1.0);
139 let clamped = exponent.clamp(-700.0, 700.0);
141 clamped.exp()
142 }, degree)
143 }
144
145 pub fn low_pass(cutoff: f64, degree: usize) -> Self {
148 let steepness = 10.0 / cutoff.max(0.1);
149 Self::from_function(
150 |x| {
151 let lambda = (x + 1.0) / 2.0 * 2.0; let exponent = steepness * (lambda - cutoff);
153 let clamped = exponent.clamp(-700.0, 700.0);
155 1.0 / (1.0 + clamped.exp())
156 },
157 degree,
158 )
159 }
160
161 pub fn eval(&self, x: f64) -> f64 {
164 if self.coefficients.is_empty() {
165 return 0.0;
166 }
167 if self.coefficients.len() == 1 {
168 return self.coefficients[0];
169 }
170
171 let n = self.coefficients.len();
173 let mut b_next = 0.0;
174 let mut b_curr = 0.0;
175
176 for k in (1..n).rev() {
177 let b_prev = 2.0 * x * b_curr - b_next + self.coefficients[k];
178 b_next = b_curr;
179 b_curr = b_prev;
180 }
181
182 self.coefficients[0] + x * b_curr - b_next
183 }
184
185 pub fn eval_vector(&self, x: &[f64]) -> Vec<f64> {
187 x.iter().map(|&xi| self.eval(xi)).collect()
188 }
189
190 pub fn degree(&self) -> usize {
192 self.coefficients.len().saturating_sub(1)
193 }
194
195 pub fn truncate(&self, new_degree: usize) -> Self {
197 let n = (new_degree + 1).min(self.coefficients.len());
198 Self {
199 coefficients: self.coefficients[..n].to_vec(),
200 }
201 }
202
203 pub fn add(&self, other: &Self) -> Self {
205 let max_len = self.coefficients.len().max(other.coefficients.len());
206 let mut coefficients = vec![0.0; max_len];
207
208 for (i, &c) in self.coefficients.iter().enumerate() {
209 coefficients[i] += c;
210 }
211 for (i, &c) in other.coefficients.iter().enumerate() {
212 coefficients[i] += c;
213 }
214
215 Self { coefficients }
216 }
217
218 pub fn scale(&self, s: f64) -> Self {
220 Self {
221 coefficients: self.coefficients.iter().map(|&c| c * s).collect(),
222 }
223 }
224
225 pub fn derivative(&self) -> Self {
228 let n = self.coefficients.len();
229 if n <= 1 {
230 return Self::new(vec![0.0]);
231 }
232
233 let mut d_coeffs = vec![0.0; n - 1];
234
235 for k in (0..n - 1).rev() {
237 d_coeffs[k] = 2.0 * (k + 1) as f64 * self.coefficients[k + 1];
238 if k + 2 < n {
239 d_coeffs[k] += if k == 0 { 0.0 } else { d_coeffs[k + 2] };
240 }
241 }
242
243 if !d_coeffs.is_empty() {
245 d_coeffs[0] *= 0.5;
246 }
247
248 Self { coefficients: d_coeffs }
249 }
250}
251
252#[cfg(test)]
253mod tests {
254 use super::*;
255
256 #[test]
257 fn test_chebyshev_polynomial() {
258 assert!((ChebyshevPolynomial::new(0).eval(0.5) - 1.0).abs() < 1e-10);
260
261 assert!((ChebyshevPolynomial::new(1).eval(0.5) - 0.5).abs() < 1e-10);
263
264 let t2_at_half = 2.0 * 0.5 * 0.5 - 1.0;
266 assert!((ChebyshevPolynomial::new(2).eval(0.5) - t2_at_half).abs() < 1e-10);
267
268 let t3_at_half = 4.0 * 0.5_f64.powi(3) - 3.0 * 0.5;
270 assert!((ChebyshevPolynomial::new(3).eval(0.5) - t3_at_half).abs() < 1e-10);
271 }
272
273 #[test]
274 fn test_eval_all() {
275 let x = 0.5;
276 let all = ChebyshevPolynomial::eval_all(x, 5);
277
278 assert_eq!(all.len(), 6);
279 for (k, &t_k) in all.iter().enumerate() {
280 let expected = ChebyshevPolynomial::new(k).eval(x);
281 assert!((t_k - expected).abs() < 1e-10);
282 }
283 }
284
285 #[test]
286 fn test_chebyshev_nodes() {
287 let nodes = ChebyshevPolynomial::nodes(4);
288 assert_eq!(nodes.len(), 4);
289
290 for &x in &nodes {
292 assert!(x >= -1.0 && x <= 1.0);
293 }
294 }
295
296 #[test]
297 fn test_expansion_constant() {
298 let expansion = ChebyshevExpansion::from_function(|_| 5.0, 3);
299
300 for x in [-0.9, -0.5, 0.0, 0.5, 0.9] {
302 assert!((expansion.eval(x) - 5.0).abs() < 0.1);
303 }
304 }
305
306 #[test]
307 fn test_expansion_linear() {
308 let expansion = ChebyshevExpansion::from_function(|x| 2.0 * x + 1.0, 5);
309
310 for x in [-0.8, -0.3, 0.0, 0.4, 0.7] {
311 let expected = 2.0 * x + 1.0;
312 assert!(
313 (expansion.eval(x) - expected).abs() < 0.1,
314 "x={}, expected={}, got={}",
315 x,
316 expected,
317 expansion.eval(x)
318 );
319 }
320 }
321
322 #[test]
323 fn test_heat_kernel() {
324 let heat = ChebyshevExpansion::heat_kernel(1.0, 10);
325
326 let at_zero = heat.eval(-1.0);
328 assert!((at_zero - 1.0).abs() < 0.1);
329
330 let at_two = heat.eval(1.0);
332 assert!((at_two - (-2.0_f64).exp()).abs() < 0.1);
333 }
334
335 #[test]
336 fn test_clenshaw_stability() {
337 let expansion = ChebyshevExpansion::from_function(|x| x.sin(), 20);
339
340 for x in [-0.9, 0.0, 0.9] {
341 let approx = expansion.eval(x);
342 let exact = x.sin();
343 assert!(
344 (approx - exact).abs() < 0.01,
345 "x={}, approx={}, exact={}",
346 x,
347 approx,
348 exact
349 );
350 }
351 }
352}