Module optimal_transport

Module optimal_transport 

Source
Expand description

Optimal Transport Algorithms

This module provides implementations of optimal transport distances and solvers:

  • Sliced Wasserstein Distance: O(n log n) via random 1D projections
  • Sinkhorn Algorithm: Log-stabilized entropic regularization
  • Gromov-Wasserstein: Cross-space structure comparison

§Theory

Optimal transport measures the minimum “cost” to transform one probability distribution into another. The Wasserstein distance (Earth Mover’s Distance) is defined as:

W_p(μ, ν) = (inf_{γ ∈ Π(μ,ν)} ∫∫ c(x,y)^p dγ(x,y))^{1/p}

where Π(μ,ν) is the set of all couplings with marginals μ and ν.

  • Cross-lingual document retrieval (comparing embedding distributions)
  • Image region matching (comparing feature distributions)
  • Time series pattern matching
  • Document similarity via word embedding distributions

Structs§

GromovWasserstein
Gromov-Wasserstein distance calculator
SinkhornSolver
Log-stabilized Sinkhorn solver for entropic optimal transport
SlicedWasserstein
Sliced Wasserstein distance calculator
TransportPlan
Result of Sinkhorn algorithm
WassersteinConfig
Configuration for Wasserstein distance computation

Traits§

OptimalTransport
Trait for optimal transport distance computations