ruvector_graph/hybrid/
graph_neural.rs

1//! Graph Neural Network inference capabilities
2//!
3//! Provides GNN-based predictions: node classification, link prediction, graph embeddings.
4
5use crate::error::{GraphError, Result};
6use crate::types::{EdgeId, NodeId};
7use serde::{Deserialize, Serialize};
8use std::collections::HashMap;
9
10/// Configuration for GNN engine
11#[derive(Debug, Clone, Serialize, Deserialize)]
12pub struct GnnConfig {
13    /// Number of GNN layers
14    pub num_layers: usize,
15    /// Hidden dimension size
16    pub hidden_dim: usize,
17    /// Aggregation method
18    pub aggregation: AggregationType,
19    /// Activation function
20    pub activation: ActivationType,
21    /// Dropout rate
22    pub dropout: f32,
23}
24
25impl Default for GnnConfig {
26    fn default() -> Self {
27        Self {
28            num_layers: 2,
29            hidden_dim: 128,
30            aggregation: AggregationType::Mean,
31            activation: ActivationType::ReLU,
32            dropout: 0.1,
33        }
34    }
35}
36
37/// Aggregation type for message passing
38#[derive(Debug, Clone, Copy, Serialize, Deserialize)]
39pub enum AggregationType {
40    Mean,
41    Sum,
42    Max,
43    Attention,
44}
45
46/// Activation function type
47#[derive(Debug, Clone, Copy, Serialize, Deserialize)]
48pub enum ActivationType {
49    ReLU,
50    Sigmoid,
51    Tanh,
52    GELU,
53}
54
55/// Graph Neural Network engine
56pub struct GraphNeuralEngine {
57    config: GnnConfig,
58    // In real implementation, would store model weights
59    node_embeddings: HashMap<NodeId, Vec<f32>>,
60}
61
62impl GraphNeuralEngine {
63    /// Create a new GNN engine
64    pub fn new(config: GnnConfig) -> Self {
65        Self {
66            config,
67            node_embeddings: HashMap::new(),
68        }
69    }
70
71    /// Load pre-trained model weights
72    pub fn load_model(&mut self, _model_path: &str) -> Result<()> {
73        // Placeholder for model loading
74        // Real implementation would:
75        // 1. Load weights from file
76        // 2. Initialize neural network layers
77        // 3. Set up computation graph
78        Ok(())
79    }
80
81    /// Classify a node based on its features and neighbors
82    pub fn classify_node(&self, node_id: &NodeId, _features: &[f32]) -> Result<NodeClassification> {
83        // Placeholder for GNN inference
84        // Real implementation would:
85        // 1. Gather neighbor features
86        // 2. Apply message passing layers
87        // 3. Aggregate neighbor information
88        // 4. Compute final classification
89
90        let class_probabilities = vec![0.7, 0.2, 0.1]; // Dummy probabilities
91        let predicted_class = 0;
92
93        Ok(NodeClassification {
94            node_id: node_id.clone(),
95            predicted_class,
96            class_probabilities,
97            confidence: 0.7,
98        })
99    }
100
101    /// Predict likelihood of a link between two nodes
102    pub fn predict_link(&self, node1: &NodeId, node2: &NodeId) -> Result<LinkPrediction> {
103        // Placeholder for link prediction
104        // Real implementation would:
105        // 1. Get embeddings for both nodes
106        // 2. Compute compatibility score (dot product, concat+MLP, etc.)
107        // 3. Apply sigmoid for probability
108
109        let score = 0.85; // Dummy score
110        let exists = score > 0.5;
111
112        Ok(LinkPrediction {
113            node1: node1.clone(),
114            node2: node2.clone(),
115            score,
116            exists,
117        })
118    }
119
120    /// Generate embedding for entire graph or subgraph
121    pub fn embed_graph(&self, node_ids: &[NodeId]) -> Result<GraphEmbedding> {
122        // Placeholder for graph-level embedding
123        // Real implementation would use graph pooling:
124        // 1. Get node embeddings
125        // 2. Apply pooling (mean, max, attention-based)
126        // 3. Optionally apply final MLP
127
128        let embedding = vec![0.0; self.config.hidden_dim];
129
130        Ok(GraphEmbedding {
131            embedding,
132            node_count: node_ids.len(),
133            method: "mean_pooling".to_string(),
134        })
135    }
136
137    /// Update node embeddings using message passing
138    pub fn update_embeddings(&mut self, graph_structure: &GraphStructure) -> Result<()> {
139        // Placeholder for embedding update
140        // Real implementation would:
141        // 1. For each layer:
142        //    - Aggregate neighbor features
143        //    - Apply linear transformation
144        //    - Apply activation
145        // 2. Store final embeddings
146
147        for node_id in &graph_structure.nodes {
148            let embedding = vec![0.0; self.config.hidden_dim];
149            self.node_embeddings.insert(node_id.clone(), embedding);
150        }
151
152        Ok(())
153    }
154
155    /// Get embedding for a specific node
156    pub fn get_node_embedding(&self, node_id: &NodeId) -> Option<&Vec<f32>> {
157        self.node_embeddings.get(node_id)
158    }
159
160    /// Batch node classification
161    pub fn classify_nodes_batch(
162        &self,
163        nodes: &[(NodeId, Vec<f32>)],
164    ) -> Result<Vec<NodeClassification>> {
165        nodes
166            .iter()
167            .map(|(id, features)| self.classify_node(id, features))
168            .collect()
169    }
170
171    /// Batch link prediction
172    pub fn predict_links_batch(&self, pairs: &[(NodeId, NodeId)]) -> Result<Vec<LinkPrediction>> {
173        pairs
174            .iter()
175            .map(|(n1, n2)| self.predict_link(n1, n2))
176            .collect()
177    }
178
179    /// Apply attention mechanism for neighbor aggregation
180    fn aggregate_with_attention(
181        &self,
182        _node_embedding: &[f32],
183        _neighbor_embeddings: &[Vec<f32>],
184    ) -> Vec<f32> {
185        // Placeholder for attention-based aggregation
186        // Real implementation would compute attention weights
187        vec![0.0; self.config.hidden_dim]
188    }
189
190    /// Apply activation function with numerical stability
191    fn activate(&self, x: f32) -> f32 {
192        match self.config.activation {
193            ActivationType::ReLU => x.max(0.0),
194            ActivationType::Sigmoid => {
195                if x > 0.0 {
196                    1.0 / (1.0 + (-x).exp())
197                } else {
198                    let ex = x.exp();
199                    ex / (1.0 + ex)
200                }
201            }
202            ActivationType::Tanh => x.tanh(),
203            ActivationType::GELU => {
204                // Approximate GELU
205                0.5 * x * (1.0 + (0.7978845608 * (x + 0.044715 * x.powi(3))).tanh())
206            }
207        }
208    }
209}
210
211/// Result of node classification
212#[derive(Debug, Clone, Serialize, Deserialize)]
213pub struct NodeClassification {
214    pub node_id: NodeId,
215    pub predicted_class: usize,
216    pub class_probabilities: Vec<f32>,
217    pub confidence: f32,
218}
219
220/// Result of link prediction
221#[derive(Debug, Clone, Serialize, Deserialize)]
222pub struct LinkPrediction {
223    pub node1: NodeId,
224    pub node2: NodeId,
225    pub score: f32,
226    pub exists: bool,
227}
228
229/// Graph-level embedding
230#[derive(Debug, Clone, Serialize, Deserialize)]
231pub struct GraphEmbedding {
232    pub embedding: Vec<f32>,
233    pub node_count: usize,
234    pub method: String,
235}
236
237/// Graph structure for GNN processing
238#[derive(Debug, Clone, Serialize, Deserialize)]
239pub struct GraphStructure {
240    pub nodes: Vec<NodeId>,
241    pub edges: Vec<(NodeId, NodeId)>,
242    pub node_features: HashMap<NodeId, Vec<f32>>,
243}
244
245#[cfg(test)]
246mod tests {
247    use super::*;
248
249    #[test]
250    fn test_gnn_engine_creation() {
251        let config = GnnConfig::default();
252        let _engine = GraphNeuralEngine::new(config);
253    }
254
255    #[test]
256    fn test_node_classification() -> Result<()> {
257        let engine = GraphNeuralEngine::new(GnnConfig::default());
258        let features = vec![1.0, 0.5, 0.3];
259
260        let result = engine.classify_node(&"node1".to_string(), &features)?;
261
262        assert_eq!(result.node_id, "node1");
263        assert!(result.confidence > 0.0);
264        assert!(!result.class_probabilities.is_empty());
265
266        Ok(())
267    }
268
269    #[test]
270    fn test_link_prediction() -> Result<()> {
271        let engine = GraphNeuralEngine::new(GnnConfig::default());
272
273        let result = engine.predict_link(&"node1".to_string(), &"node2".to_string())?;
274
275        assert_eq!(result.node1, "node1");
276        assert_eq!(result.node2, "node2");
277        assert!(result.score >= 0.0 && result.score <= 1.0);
278
279        Ok(())
280    }
281
282    #[test]
283    fn test_graph_embedding() -> Result<()> {
284        let engine = GraphNeuralEngine::new(GnnConfig::default());
285        let nodes = vec!["n1".to_string(), "n2".to_string(), "n3".to_string()];
286
287        let embedding = engine.embed_graph(&nodes)?;
288
289        assert_eq!(embedding.node_count, 3);
290        assert_eq!(embedding.embedding.len(), 128);
291
292        Ok(())
293    }
294
295    #[test]
296    fn test_batch_classification() -> Result<()> {
297        let engine = GraphNeuralEngine::new(GnnConfig::default());
298        let nodes = vec![
299            ("n1".to_string(), vec![1.0, 0.0]),
300            ("n2".to_string(), vec![0.0, 1.0]),
301        ];
302
303        let results = engine.classify_nodes_batch(&nodes)?;
304        assert_eq!(results.len(), 2);
305
306        Ok(())
307    }
308
309    #[test]
310    fn test_activation_functions() {
311        let engine = GraphNeuralEngine::new(GnnConfig {
312            activation: ActivationType::ReLU,
313            ..Default::default()
314        });
315
316        assert_eq!(engine.activate(-1.0), 0.0);
317        assert_eq!(engine.activate(1.0), 1.0);
318    }
319}