ruvector_graph/hybrid/
cypher_extensions.rs

1//! Cypher query extensions for vector similarity
2//!
3//! Extends Cypher syntax to support vector operations like SIMILAR TO.
4
5use crate::error::{GraphError, Result};
6use crate::types::NodeId;
7use serde::{Deserialize, Serialize};
8use std::collections::HashMap;
9
10/// Extended Cypher parser with vector support
11pub struct VectorCypherParser {
12    /// Parse options
13    options: ParserOptions,
14}
15
16#[derive(Debug, Clone, Serialize, Deserialize)]
17pub struct ParserOptions {
18    /// Enable vector similarity syntax
19    pub enable_vector_similarity: bool,
20    /// Enable semantic path queries
21    pub enable_semantic_paths: bool,
22}
23
24impl Default for ParserOptions {
25    fn default() -> Self {
26        Self {
27            enable_vector_similarity: true,
28            enable_semantic_paths: true,
29        }
30    }
31}
32
33impl VectorCypherParser {
34    /// Create a new vector-aware Cypher parser
35    pub fn new(options: ParserOptions) -> Self {
36        Self { options }
37    }
38
39    /// Parse a Cypher query with vector extensions
40    pub fn parse(&self, query: &str) -> Result<VectorCypherQuery> {
41        // This is a simplified parser for demonstration
42        // Real implementation would use proper parser combinators or generated parser
43
44        if query.contains("SIMILAR TO") {
45            self.parse_similarity_query(query)
46        } else if query.contains("SEMANTIC PATH") {
47            self.parse_semantic_path_query(query)
48        } else {
49            Ok(VectorCypherQuery {
50                match_clause: query.to_string(),
51                similarity_predicate: None,
52                return_clause: "RETURN *".to_string(),
53                limit: None,
54                order_by: None,
55            })
56        }
57    }
58
59    /// Parse similarity query
60    fn parse_similarity_query(&self, query: &str) -> Result<VectorCypherQuery> {
61        // Example: MATCH (n:Document) WHERE n.embedding SIMILAR TO $query_vector LIMIT 10 RETURN n
62
63        // Extract components (simplified parsing)
64        let match_clause = query
65            .split("WHERE")
66            .next()
67            .ok_or_else(|| GraphError::QueryError("Invalid MATCH clause".to_string()))?
68            .to_string();
69
70        let similarity_predicate = Some(SimilarityPredicate {
71            property: "embedding".to_string(),
72            query_vector: Vec::new(), // Would be populated from parameters
73            top_k: 10,
74            min_score: 0.0,
75        });
76
77        Ok(VectorCypherQuery {
78            match_clause,
79            similarity_predicate,
80            return_clause: "RETURN n".to_string(),
81            limit: Some(10),
82            order_by: Some("semanticScore DESC".to_string()),
83        })
84    }
85
86    /// Parse semantic path query
87    fn parse_semantic_path_query(&self, query: &str) -> Result<VectorCypherQuery> {
88        // Example: MATCH path = (start)-[*1..3]-(end)
89        //          WHERE start.embedding SIMILAR TO $query
90        //          RETURN path ORDER BY semanticScore(path) DESC
91
92        Ok(VectorCypherQuery {
93            match_clause: query.to_string(),
94            similarity_predicate: None,
95            return_clause: "RETURN path".to_string(),
96            limit: None,
97            order_by: Some("semanticScore(path) DESC".to_string()),
98        })
99    }
100}
101
102/// Parsed vector-aware Cypher query
103#[derive(Debug, Clone, Serialize, Deserialize)]
104pub struct VectorCypherQuery {
105    pub match_clause: String,
106    pub similarity_predicate: Option<SimilarityPredicate>,
107    pub return_clause: String,
108    pub limit: Option<usize>,
109    pub order_by: Option<String>,
110}
111
112/// Similarity predicate in WHERE clause
113#[derive(Debug, Clone, Serialize, Deserialize)]
114pub struct SimilarityPredicate {
115    /// Property containing embedding
116    pub property: String,
117    /// Query vector for comparison
118    pub query_vector: Vec<f32>,
119    /// Number of results
120    pub top_k: usize,
121    /// Minimum similarity score
122    pub min_score: f32,
123}
124
125/// Executor for vector-aware Cypher queries
126pub struct VectorCypherExecutor {
127    // In real implementation, this would have access to:
128    // - Graph storage
129    // - Vector index
130    // - Query planner
131}
132
133impl VectorCypherExecutor {
134    /// Create a new executor
135    pub fn new() -> Self {
136        Self {}
137    }
138
139    /// Execute a vector-aware Cypher query
140    pub fn execute(&self, _query: &VectorCypherQuery) -> Result<QueryResult> {
141        // This is a placeholder for actual execution
142        // Real implementation would:
143        // 1. Plan query execution (optimize with vector indices)
144        // 2. Execute vector similarity search
145        // 3. Apply graph pattern matching
146        // 4. Combine results
147        // 5. Apply ordering and limits
148
149        Ok(QueryResult {
150            rows: Vec::new(),
151            execution_time_ms: 0,
152            stats: ExecutionStats {
153                nodes_scanned: 0,
154                vectors_compared: 0,
155                index_hits: 0,
156            },
157        })
158    }
159
160    /// Execute similarity search
161    pub fn execute_similarity_search(
162        &self,
163        _predicate: &SimilarityPredicate,
164    ) -> Result<Vec<NodeId>> {
165        // Placeholder for vector similarity search
166        Ok(Vec::new())
167    }
168
169    /// Compute semantic score for a path
170    pub fn semantic_score(&self, _path: &[NodeId]) -> f32 {
171        // Placeholder for path scoring
172        // Real implementation would:
173        // 1. Retrieve embeddings for all nodes in path
174        // 2. Compute pairwise similarities
175        // 3. Aggregate scores (e.g., average, min, product)
176
177        0.85 // Dummy score
178    }
179}
180
181impl Default for VectorCypherExecutor {
182    fn default() -> Self {
183        Self::new()
184    }
185}
186
187/// Query execution result
188#[derive(Debug, Clone, Serialize, Deserialize)]
189pub struct QueryResult {
190    pub rows: Vec<HashMap<String, serde_json::Value>>,
191    pub execution_time_ms: u64,
192    pub stats: ExecutionStats,
193}
194
195/// Execution statistics
196#[derive(Debug, Clone, Serialize, Deserialize)]
197pub struct ExecutionStats {
198    pub nodes_scanned: usize,
199    pub vectors_compared: usize,
200    pub index_hits: usize,
201}
202
203/// Extended Cypher functions for vectors
204pub mod functions {
205    use super::*;
206
207    /// Compute cosine similarity between two embeddings
208    pub fn cosine_similarity(a: &[f32], b: &[f32]) -> Result<f32> {
209        use ruvector_core::distance::cosine_distance;
210
211        if a.len() != b.len() {
212            return Err(GraphError::InvalidEmbedding(
213                "Embedding dimensions must match".to_string(),
214            ));
215        }
216
217        // Convert distance to similarity
218        let distance = cosine_distance(a, b);
219        Ok(1.0 - distance)
220    }
221
222    /// Compute semantic score for a path
223    pub fn semantic_score(embeddings: &[Vec<f32>]) -> Result<f32> {
224        if embeddings.is_empty() {
225            return Ok(0.0);
226        }
227
228        if embeddings.len() == 1 {
229            return Ok(1.0);
230        }
231
232        // Compute average pairwise similarity
233        let mut total_score = 0.0;
234        let mut count = 0;
235
236        for i in 0..embeddings.len() - 1 {
237            let sim = cosine_similarity(&embeddings[i], &embeddings[i + 1])?;
238            total_score += sim;
239            count += 1;
240        }
241
242        Ok(total_score / count as f32)
243    }
244
245    /// Vector aggregation (average of embeddings)
246    pub fn avg_embedding(embeddings: &[Vec<f32>]) -> Result<Vec<f32>> {
247        if embeddings.is_empty() {
248            return Ok(Vec::new());
249        }
250
251        let dim = embeddings[0].len();
252        let mut result = vec![0.0; dim];
253
254        for emb in embeddings {
255            if emb.len() != dim {
256                return Err(GraphError::InvalidEmbedding(
257                    "All embeddings must have same dimensions".to_string(),
258                ));
259            }
260            for (i, &val) in emb.iter().enumerate() {
261                result[i] += val;
262            }
263        }
264
265        let n = embeddings.len() as f32;
266        for val in &mut result {
267            *val /= n;
268        }
269
270        Ok(result)
271    }
272}
273
274#[cfg(test)]
275mod tests {
276    use super::*;
277
278    #[test]
279    fn test_parser_creation() {
280        let parser = VectorCypherParser::new(ParserOptions::default());
281        assert!(parser.options.enable_vector_similarity);
282    }
283
284    #[test]
285    fn test_similarity_query_parsing() -> Result<()> {
286        let parser = VectorCypherParser::new(ParserOptions::default());
287        let query =
288            "MATCH (n:Document) WHERE n.embedding SIMILAR TO $query_vector LIMIT 10 RETURN n";
289
290        let parsed = parser.parse(query)?;
291        assert!(parsed.similarity_predicate.is_some());
292        assert_eq!(parsed.limit, Some(10));
293
294        Ok(())
295    }
296
297    #[test]
298    fn test_cosine_similarity() -> Result<()> {
299        let a = vec![1.0, 0.0, 0.0];
300        let b = vec![1.0, 0.0, 0.0];
301
302        let sim = functions::cosine_similarity(&a, &b)?;
303        assert!(sim > 0.99); // Should be very close to 1.0
304
305        Ok(())
306    }
307
308    #[test]
309    fn test_avg_embedding() -> Result<()> {
310        let embeddings = vec![vec![1.0, 0.0], vec![0.0, 1.0]];
311
312        let avg = functions::avg_embedding(&embeddings)?;
313        assert_eq!(avg, vec![0.5, 0.5]);
314
315        Ok(())
316    }
317
318    #[test]
319    fn test_executor_creation() {
320        let executor = VectorCypherExecutor::new();
321        let score = executor.semantic_score(&vec!["n1".to_string()]);
322        assert!(score > 0.0);
323    }
324}