1use crate::error::{GraphError, Result};
6use crate::types::NodeId;
7use serde::{Deserialize, Serialize};
8use std::collections::HashMap;
9
10pub struct VectorCypherParser {
12 options: ParserOptions,
14}
15
16#[derive(Debug, Clone, Serialize, Deserialize)]
17pub struct ParserOptions {
18 pub enable_vector_similarity: bool,
20 pub enable_semantic_paths: bool,
22}
23
24impl Default for ParserOptions {
25 fn default() -> Self {
26 Self {
27 enable_vector_similarity: true,
28 enable_semantic_paths: true,
29 }
30 }
31}
32
33impl VectorCypherParser {
34 pub fn new(options: ParserOptions) -> Self {
36 Self { options }
37 }
38
39 pub fn parse(&self, query: &str) -> Result<VectorCypherQuery> {
41 if query.contains("SIMILAR TO") {
45 self.parse_similarity_query(query)
46 } else if query.contains("SEMANTIC PATH") {
47 self.parse_semantic_path_query(query)
48 } else {
49 Ok(VectorCypherQuery {
50 match_clause: query.to_string(),
51 similarity_predicate: None,
52 return_clause: "RETURN *".to_string(),
53 limit: None,
54 order_by: None,
55 })
56 }
57 }
58
59 fn parse_similarity_query(&self, query: &str) -> Result<VectorCypherQuery> {
61 let match_clause = query
65 .split("WHERE")
66 .next()
67 .ok_or_else(|| GraphError::QueryError("Invalid MATCH clause".to_string()))?
68 .to_string();
69
70 let similarity_predicate = Some(SimilarityPredicate {
71 property: "embedding".to_string(),
72 query_vector: Vec::new(), top_k: 10,
74 min_score: 0.0,
75 });
76
77 Ok(VectorCypherQuery {
78 match_clause,
79 similarity_predicate,
80 return_clause: "RETURN n".to_string(),
81 limit: Some(10),
82 order_by: Some("semanticScore DESC".to_string()),
83 })
84 }
85
86 fn parse_semantic_path_query(&self, query: &str) -> Result<VectorCypherQuery> {
88 Ok(VectorCypherQuery {
93 match_clause: query.to_string(),
94 similarity_predicate: None,
95 return_clause: "RETURN path".to_string(),
96 limit: None,
97 order_by: Some("semanticScore(path) DESC".to_string()),
98 })
99 }
100}
101
102#[derive(Debug, Clone, Serialize, Deserialize)]
104pub struct VectorCypherQuery {
105 pub match_clause: String,
106 pub similarity_predicate: Option<SimilarityPredicate>,
107 pub return_clause: String,
108 pub limit: Option<usize>,
109 pub order_by: Option<String>,
110}
111
112#[derive(Debug, Clone, Serialize, Deserialize)]
114pub struct SimilarityPredicate {
115 pub property: String,
117 pub query_vector: Vec<f32>,
119 pub top_k: usize,
121 pub min_score: f32,
123}
124
125pub struct VectorCypherExecutor {
127 }
132
133impl VectorCypherExecutor {
134 pub fn new() -> Self {
136 Self {}
137 }
138
139 pub fn execute(&self, _query: &VectorCypherQuery) -> Result<QueryResult> {
141 Ok(QueryResult {
150 rows: Vec::new(),
151 execution_time_ms: 0,
152 stats: ExecutionStats {
153 nodes_scanned: 0,
154 vectors_compared: 0,
155 index_hits: 0,
156 },
157 })
158 }
159
160 pub fn execute_similarity_search(
162 &self,
163 _predicate: &SimilarityPredicate,
164 ) -> Result<Vec<NodeId>> {
165 Ok(Vec::new())
167 }
168
169 pub fn semantic_score(&self, _path: &[NodeId]) -> f32 {
171 0.85 }
179}
180
181impl Default for VectorCypherExecutor {
182 fn default() -> Self {
183 Self::new()
184 }
185}
186
187#[derive(Debug, Clone, Serialize, Deserialize)]
189pub struct QueryResult {
190 pub rows: Vec<HashMap<String, serde_json::Value>>,
191 pub execution_time_ms: u64,
192 pub stats: ExecutionStats,
193}
194
195#[derive(Debug, Clone, Serialize, Deserialize)]
197pub struct ExecutionStats {
198 pub nodes_scanned: usize,
199 pub vectors_compared: usize,
200 pub index_hits: usize,
201}
202
203pub mod functions {
205 use super::*;
206
207 pub fn cosine_similarity(a: &[f32], b: &[f32]) -> Result<f32> {
209 use ruvector_core::distance::cosine_distance;
210
211 if a.len() != b.len() {
212 return Err(GraphError::InvalidEmbedding(
213 "Embedding dimensions must match".to_string(),
214 ));
215 }
216
217 let distance = cosine_distance(a, b);
219 Ok(1.0 - distance)
220 }
221
222 pub fn semantic_score(embeddings: &[Vec<f32>]) -> Result<f32> {
224 if embeddings.is_empty() {
225 return Ok(0.0);
226 }
227
228 if embeddings.len() == 1 {
229 return Ok(1.0);
230 }
231
232 let mut total_score = 0.0;
234 let mut count = 0;
235
236 for i in 0..embeddings.len() - 1 {
237 let sim = cosine_similarity(&embeddings[i], &embeddings[i + 1])?;
238 total_score += sim;
239 count += 1;
240 }
241
242 Ok(total_score / count as f32)
243 }
244
245 pub fn avg_embedding(embeddings: &[Vec<f32>]) -> Result<Vec<f32>> {
247 if embeddings.is_empty() {
248 return Ok(Vec::new());
249 }
250
251 let dim = embeddings[0].len();
252 let mut result = vec![0.0; dim];
253
254 for emb in embeddings {
255 if emb.len() != dim {
256 return Err(GraphError::InvalidEmbedding(
257 "All embeddings must have same dimensions".to_string(),
258 ));
259 }
260 for (i, &val) in emb.iter().enumerate() {
261 result[i] += val;
262 }
263 }
264
265 let n = embeddings.len() as f32;
266 for val in &mut result {
267 *val /= n;
268 }
269
270 Ok(result)
271 }
272}
273
274#[cfg(test)]
275mod tests {
276 use super::*;
277
278 #[test]
279 fn test_parser_creation() {
280 let parser = VectorCypherParser::new(ParserOptions::default());
281 assert!(parser.options.enable_vector_similarity);
282 }
283
284 #[test]
285 fn test_similarity_query_parsing() -> Result<()> {
286 let parser = VectorCypherParser::new(ParserOptions::default());
287 let query =
288 "MATCH (n:Document) WHERE n.embedding SIMILAR TO $query_vector LIMIT 10 RETURN n";
289
290 let parsed = parser.parse(query)?;
291 assert!(parsed.similarity_predicate.is_some());
292 assert_eq!(parsed.limit, Some(10));
293
294 Ok(())
295 }
296
297 #[test]
298 fn test_cosine_similarity() -> Result<()> {
299 let a = vec![1.0, 0.0, 0.0];
300 let b = vec![1.0, 0.0, 0.0];
301
302 let sim = functions::cosine_similarity(&a, &b)?;
303 assert!(sim > 0.99); Ok(())
306 }
307
308 #[test]
309 fn test_avg_embedding() -> Result<()> {
310 let embeddings = vec![vec![1.0, 0.0], vec![0.0, 1.0]];
311
312 let avg = functions::avg_embedding(&embeddings)?;
313 assert_eq!(avg, vec![0.5, 0.5]);
314
315 Ok(())
316 }
317
318 #[test]
319 fn test_executor_creation() {
320 let executor = VectorCypherExecutor::new();
321 let score = executor.semantic_score(&vec!["n1".to_string()]);
322 assert!(score > 0.0);
323 }
324}