Module optimization

Module optimization 

Source
Expand description

Performance optimization modules for orders of magnitude speedup

This module provides cutting-edge optimizations targeting 100x performance improvement over Neo4j through:

  • SIMD-vectorized graph traversal
  • Cache-optimized data layouts
  • Custom memory allocators
  • Compressed indexes
  • JIT-compiled query operators
  • Bloom filters for negative lookups
  • Adaptive radix trees for property indexes

Re-exports§

pub use adaptive_radix::AdaptiveRadixTree;
pub use adaptive_radix::ArtNode;
pub use bloom_filter::BloomFilter;
pub use bloom_filter::ScalableBloomFilter;
pub use cache_hierarchy::CacheHierarchy;
pub use cache_hierarchy::HotColdStorage;
pub use index_compression::CompressedIndex;
pub use index_compression::DeltaEncoder;
pub use index_compression::RoaringBitmapIndex;
pub use memory_pool::ArenaAllocator;
pub use memory_pool::NumaAllocator;
pub use memory_pool::QueryArena;
pub use query_jit::JitCompiler;
pub use query_jit::JitQuery;
pub use query_jit::QueryOperator;
pub use simd_traversal::SimdBfsIterator;
pub use simd_traversal::SimdDfsIterator;
pub use simd_traversal::SimdTraversal;

Modules§

adaptive_radix
Adaptive Radix Tree (ART) for property indexes
bloom_filter
Bloom filters for fast negative lookups
cache_hierarchy
Cache-optimized data layouts with hot/cold data separation
index_compression
Compressed index structures for massive space savings
memory_pool
Custom memory allocators for graph query execution
query_jit
JIT compilation for hot query paths
simd_traversal
SIMD-optimized graph traversal algorithms