Module hybrid

Module hybrid 

Source
Expand description

Vector-Graph Hybrid Query System

Combines vector similarity search with graph traversal for AI workloads. Supports semantic search, RAG (Retrieval Augmented Generation), and GNN inference.

Re-exports§

pub use cypher_extensions::SimilarityPredicate;
pub use cypher_extensions::VectorCypherExecutor;
pub use cypher_extensions::VectorCypherParser;
pub use graph_neural::GnnConfig;
pub use graph_neural::GraphEmbedding;
pub use graph_neural::GraphNeuralEngine;
pub use graph_neural::LinkPrediction;
pub use graph_neural::NodeClassification;
pub use rag_integration::Context;
pub use rag_integration::Evidence;
pub use rag_integration::RagConfig;
pub use rag_integration::RagEngine;
pub use rag_integration::ReasoningPath;
pub use semantic_search::ClusterResult;
pub use semantic_search::SemanticPath;
pub use semantic_search::SemanticSearch;
pub use semantic_search::SemanticSearchConfig;
pub use vector_index::EmbeddingConfig;
pub use vector_index::HybridIndex;
pub use vector_index::VectorIndexType;

Modules§

cypher_extensions
Cypher query extensions for vector similarity
graph_neural
Graph Neural Network inference capabilities
rag_integration
RAG (Retrieval Augmented Generation) integration
semantic_search
Semantic search capabilities for graph queries
vector_index
Vector indexing for graph elements

Structs§

HybridQuery
Hybrid query combining graph patterns and vector similarity
HybridResult
Result from a hybrid query
VectorConstraint
Vector similarity constraint for hybrid queries