Expand description
Vector-Graph Hybrid Query System
Combines vector similarity search with graph traversal for AI workloads. Supports semantic search, RAG (Retrieval Augmented Generation), and GNN inference.
Re-exports§
pub use cypher_extensions::SimilarityPredicate;pub use cypher_extensions::VectorCypherExecutor;pub use cypher_extensions::VectorCypherParser;pub use graph_neural::GnnConfig;pub use graph_neural::GraphEmbedding;pub use graph_neural::GraphNeuralEngine;pub use graph_neural::LinkPrediction;pub use graph_neural::NodeClassification;pub use rag_integration::Context;pub use rag_integration::Evidence;pub use rag_integration::RagConfig;pub use rag_integration::RagEngine;pub use rag_integration::ReasoningPath;pub use semantic_search::ClusterResult;pub use semantic_search::SemanticPath;pub use semantic_search::SemanticSearch;pub use semantic_search::SemanticSearchConfig;pub use vector_index::EmbeddingConfig;pub use vector_index::HybridIndex;pub use vector_index::VectorIndexType;
Modules§
- cypher_
extensions - Cypher query extensions for vector similarity
- graph_
neural - Graph Neural Network inference capabilities
- rag_
integration - RAG (Retrieval Augmented Generation) integration
- semantic_
search - Semantic search capabilities for graph queries
- vector_
index - Vector indexing for graph elements
Structs§
- Hybrid
Query - Hybrid query combining graph patterns and vector similarity
- Hybrid
Result - Result from a hybrid query
- Vector
Constraint - Vector similarity constraint for hybrid queries