1use crate::error::{GraphError, Result};
6use crate::types::{EdgeId, NodeId};
7use serde::{Deserialize, Serialize};
8use std::collections::HashMap;
9
10#[derive(Debug, Clone, Serialize, Deserialize)]
12pub struct GnnConfig {
13 pub num_layers: usize,
15 pub hidden_dim: usize,
17 pub aggregation: AggregationType,
19 pub activation: ActivationType,
21 pub dropout: f32,
23}
24
25impl Default for GnnConfig {
26 fn default() -> Self {
27 Self {
28 num_layers: 2,
29 hidden_dim: 128,
30 aggregation: AggregationType::Mean,
31 activation: ActivationType::ReLU,
32 dropout: 0.1,
33 }
34 }
35}
36
37#[derive(Debug, Clone, Copy, Serialize, Deserialize)]
39pub enum AggregationType {
40 Mean,
41 Sum,
42 Max,
43 Attention,
44}
45
46#[derive(Debug, Clone, Copy, Serialize, Deserialize)]
48pub enum ActivationType {
49 ReLU,
50 Sigmoid,
51 Tanh,
52 GELU,
53}
54
55pub struct GraphNeuralEngine {
57 config: GnnConfig,
58 node_embeddings: HashMap<NodeId, Vec<f32>>,
60}
61
62impl GraphNeuralEngine {
63 pub fn new(config: GnnConfig) -> Self {
65 Self {
66 config,
67 node_embeddings: HashMap::new(),
68 }
69 }
70
71 pub fn load_model(&mut self, _model_path: &str) -> Result<()> {
73 Ok(())
79 }
80
81 pub fn classify_node(&self, node_id: &NodeId, _features: &[f32]) -> Result<NodeClassification> {
83 let class_probabilities = vec![0.7, 0.2, 0.1]; let predicted_class = 0;
92
93 Ok(NodeClassification {
94 node_id: node_id.clone(),
95 predicted_class,
96 class_probabilities,
97 confidence: 0.7,
98 })
99 }
100
101 pub fn predict_link(&self, node1: &NodeId, node2: &NodeId) -> Result<LinkPrediction> {
103 let score = 0.85; let exists = score > 0.5;
111
112 Ok(LinkPrediction {
113 node1: node1.clone(),
114 node2: node2.clone(),
115 score,
116 exists,
117 })
118 }
119
120 pub fn embed_graph(&self, node_ids: &[NodeId]) -> Result<GraphEmbedding> {
122 let embedding = vec![0.0; self.config.hidden_dim];
129
130 Ok(GraphEmbedding {
131 embedding,
132 node_count: node_ids.len(),
133 method: "mean_pooling".to_string(),
134 })
135 }
136
137 pub fn update_embeddings(&mut self, graph_structure: &GraphStructure) -> Result<()> {
139 for node_id in &graph_structure.nodes {
148 let embedding = vec![0.0; self.config.hidden_dim];
149 self.node_embeddings.insert(node_id.clone(), embedding);
150 }
151
152 Ok(())
153 }
154
155 pub fn get_node_embedding(&self, node_id: &NodeId) -> Option<&Vec<f32>> {
157 self.node_embeddings.get(node_id)
158 }
159
160 pub fn classify_nodes_batch(
162 &self,
163 nodes: &[(NodeId, Vec<f32>)],
164 ) -> Result<Vec<NodeClassification>> {
165 nodes
166 .iter()
167 .map(|(id, features)| self.classify_node(id, features))
168 .collect()
169 }
170
171 pub fn predict_links_batch(&self, pairs: &[(NodeId, NodeId)]) -> Result<Vec<LinkPrediction>> {
173 pairs
174 .iter()
175 .map(|(n1, n2)| self.predict_link(n1, n2))
176 .collect()
177 }
178
179 fn aggregate_with_attention(
181 &self,
182 _node_embedding: &[f32],
183 _neighbor_embeddings: &[Vec<f32>],
184 ) -> Vec<f32> {
185 vec![0.0; self.config.hidden_dim]
188 }
189
190 fn activate(&self, x: f32) -> f32 {
192 match self.config.activation {
193 ActivationType::ReLU => x.max(0.0),
194 ActivationType::Sigmoid => 1.0 / (1.0 + (-x).exp()),
195 ActivationType::Tanh => x.tanh(),
196 ActivationType::GELU => {
197 0.5 * x * (1.0 + (0.7978845608 * (x + 0.044715 * x.powi(3))).tanh())
199 }
200 }
201 }
202}
203
204#[derive(Debug, Clone, Serialize, Deserialize)]
206pub struct NodeClassification {
207 pub node_id: NodeId,
208 pub predicted_class: usize,
209 pub class_probabilities: Vec<f32>,
210 pub confidence: f32,
211}
212
213#[derive(Debug, Clone, Serialize, Deserialize)]
215pub struct LinkPrediction {
216 pub node1: NodeId,
217 pub node2: NodeId,
218 pub score: f32,
219 pub exists: bool,
220}
221
222#[derive(Debug, Clone, Serialize, Deserialize)]
224pub struct GraphEmbedding {
225 pub embedding: Vec<f32>,
226 pub node_count: usize,
227 pub method: String,
228}
229
230#[derive(Debug, Clone, Serialize, Deserialize)]
232pub struct GraphStructure {
233 pub nodes: Vec<NodeId>,
234 pub edges: Vec<(NodeId, NodeId)>,
235 pub node_features: HashMap<NodeId, Vec<f32>>,
236}
237
238#[cfg(test)]
239mod tests {
240 use super::*;
241
242 #[test]
243 fn test_gnn_engine_creation() {
244 let config = GnnConfig::default();
245 let _engine = GraphNeuralEngine::new(config);
246 }
247
248 #[test]
249 fn test_node_classification() -> Result<()> {
250 let engine = GraphNeuralEngine::new(GnnConfig::default());
251 let features = vec![1.0, 0.5, 0.3];
252
253 let result = engine.classify_node(&"node1".to_string(), &features)?;
254
255 assert_eq!(result.node_id, "node1");
256 assert!(result.confidence > 0.0);
257 assert!(!result.class_probabilities.is_empty());
258
259 Ok(())
260 }
261
262 #[test]
263 fn test_link_prediction() -> Result<()> {
264 let engine = GraphNeuralEngine::new(GnnConfig::default());
265
266 let result = engine.predict_link(&"node1".to_string(), &"node2".to_string())?;
267
268 assert_eq!(result.node1, "node1");
269 assert_eq!(result.node2, "node2");
270 assert!(result.score >= 0.0 && result.score <= 1.0);
271
272 Ok(())
273 }
274
275 #[test]
276 fn test_graph_embedding() -> Result<()> {
277 let engine = GraphNeuralEngine::new(GnnConfig::default());
278 let nodes = vec!["n1".to_string(), "n2".to_string(), "n3".to_string()];
279
280 let embedding = engine.embed_graph(&nodes)?;
281
282 assert_eq!(embedding.node_count, 3);
283 assert_eq!(embedding.embedding.len(), 128);
284
285 Ok(())
286 }
287
288 #[test]
289 fn test_batch_classification() -> Result<()> {
290 let engine = GraphNeuralEngine::new(GnnConfig::default());
291 let nodes = vec![
292 ("n1".to_string(), vec![1.0, 0.0]),
293 ("n2".to_string(), vec![0.0, 1.0]),
294 ];
295
296 let results = engine.classify_nodes_batch(&nodes)?;
297 assert_eq!(results.len(), 2);
298
299 Ok(())
300 }
301
302 #[test]
303 fn test_activation_functions() {
304 let engine = GraphNeuralEngine::new(GnnConfig {
305 activation: ActivationType::ReLU,
306 ..Default::default()
307 });
308
309 assert_eq!(engine.activate(-1.0), 0.0);
310 assert_eq!(engine.activate(1.0), 1.0);
311 }
312}