ruvector_core/
quantization.rs

1//! Quantization techniques for memory compression
2
3use crate::error::Result;
4use serde::{Deserialize, Serialize};
5
6/// Trait for quantized vector representations
7pub trait QuantizedVector: Send + Sync {
8    /// Quantize a full-precision vector
9    fn quantize(vector: &[f32]) -> Self;
10
11    /// Calculate distance to another quantized vector
12    fn distance(&self, other: &Self) -> f32;
13
14    /// Reconstruct approximate full-precision vector
15    fn reconstruct(&self) -> Vec<f32>;
16}
17
18/// Scalar quantization to int8 (4x compression)
19#[derive(Debug, Clone, Serialize, Deserialize)]
20pub struct ScalarQuantized {
21    /// Quantized values (int8)
22    pub data: Vec<u8>,
23    /// Minimum value for dequantization
24    pub min: f32,
25    /// Scale factor for dequantization
26    pub scale: f32,
27}
28
29impl QuantizedVector for ScalarQuantized {
30    fn quantize(vector: &[f32]) -> Self {
31        let min = vector.iter().copied().fold(f32::INFINITY, f32::min);
32        let max = vector.iter().copied().fold(f32::NEG_INFINITY, f32::max);
33
34        // Handle edge case where all values are the same (scale = 0)
35        let scale = if (max - min).abs() < f32::EPSILON {
36            1.0 // Arbitrary non-zero scale when all values are identical
37        } else {
38            (max - min) / 255.0
39        };
40
41        let data = vector
42            .iter()
43            .map(|&v| ((v - min) / scale).round().clamp(0.0, 255.0) as u8)
44            .collect();
45
46        Self { data, min, scale }
47    }
48
49    fn distance(&self, other: &Self) -> f32 {
50        // Fast int8 distance calculation
51        // Use i32 to avoid overflow: max diff is 255, and 255*255=65025 fits in i32
52
53        // Scale handling: We use the average of both scales for balanced comparison.
54        // Using max(scale) would bias toward the vector with larger range,
55        // while average provides a more symmetric distance metric.
56        // This ensures distance(a, b) ≈ distance(b, a) in the reconstructed space.
57        let avg_scale = (self.scale + other.scale) / 2.0;
58
59        self.data
60            .iter()
61            .zip(&other.data)
62            .map(|(&a, &b)| {
63                let diff = a as i32 - b as i32;
64                (diff * diff) as f32
65            })
66            .sum::<f32>()
67            .sqrt()
68            * avg_scale
69    }
70
71    fn reconstruct(&self) -> Vec<f32> {
72        self.data
73            .iter()
74            .map(|&v| self.min + (v as f32) * self.scale)
75            .collect()
76    }
77}
78
79/// Product quantization (8-16x compression)
80#[derive(Debug, Clone, Serialize, Deserialize)]
81pub struct ProductQuantized {
82    /// Quantized codes (one per subspace)
83    pub codes: Vec<u8>,
84    /// Codebooks for each subspace
85    pub codebooks: Vec<Vec<Vec<f32>>>,
86}
87
88impl ProductQuantized {
89    /// Train product quantization on a set of vectors
90    pub fn train(
91        vectors: &[Vec<f32>],
92        num_subspaces: usize,
93        codebook_size: usize,
94        iterations: usize,
95    ) -> Result<Self> {
96        if vectors.is_empty() {
97            return Err(crate::error::RuvectorError::InvalidInput(
98                "Cannot train on empty vector set".into(),
99            ));
100        }
101        if vectors[0].is_empty() {
102            return Err(crate::error::RuvectorError::InvalidInput(
103                "Cannot train on vectors with zero dimensions".into(),
104            ));
105        }
106        if codebook_size > 256 {
107            return Err(crate::error::RuvectorError::InvalidParameter(
108                format!("Codebook size {} exceeds u8 maximum of 256", codebook_size),
109            ));
110        }
111        let dimensions = vectors[0].len();
112        let subspace_dim = dimensions / num_subspaces;
113
114        let mut codebooks = Vec::with_capacity(num_subspaces);
115
116        // Train codebook for each subspace using k-means
117        for subspace_idx in 0..num_subspaces {
118            let start = subspace_idx * subspace_dim;
119            let end = start + subspace_dim;
120
121            // Extract subspace vectors
122            let subspace_vectors: Vec<Vec<f32>> =
123                vectors.iter().map(|v| v[start..end].to_vec()).collect();
124
125            // Run k-means
126            let codebook = kmeans_clustering(&subspace_vectors, codebook_size, iterations);
127            codebooks.push(codebook);
128        }
129
130        Ok(Self {
131            codes: vec![],
132            codebooks,
133        })
134    }
135
136    /// Quantize a vector using trained codebooks
137    pub fn encode(&self, vector: &[f32]) -> Vec<u8> {
138        let num_subspaces = self.codebooks.len();
139        let subspace_dim = vector.len() / num_subspaces;
140
141        let mut codes = Vec::with_capacity(num_subspaces);
142
143        for (subspace_idx, codebook) in self.codebooks.iter().enumerate() {
144            let start = subspace_idx * subspace_dim;
145            let end = start + subspace_dim;
146            let subvector = &vector[start..end];
147
148            // Find nearest centroid
149            let code = codebook
150                .iter()
151                .enumerate()
152                .min_by(|(_, a), (_, b)| {
153                    let dist_a = euclidean_squared(subvector, a);
154                    let dist_b = euclidean_squared(subvector, b);
155                    dist_a.partial_cmp(&dist_b).unwrap()
156                })
157                .map(|(idx, _)| idx as u8)
158                .unwrap_or(0);
159
160            codes.push(code);
161        }
162
163        codes
164    }
165}
166
167/// Binary quantization (32x compression)
168#[derive(Debug, Clone, Serialize, Deserialize)]
169pub struct BinaryQuantized {
170    /// Binary representation (1 bit per dimension, packed into bytes)
171    pub bits: Vec<u8>,
172    /// Number of dimensions
173    pub dimensions: usize,
174}
175
176impl QuantizedVector for BinaryQuantized {
177    fn quantize(vector: &[f32]) -> Self {
178        let dimensions = vector.len();
179        let num_bytes = (dimensions + 7) / 8;
180        let mut bits = vec![0u8; num_bytes];
181
182        for (i, &v) in vector.iter().enumerate() {
183            if v > 0.0 {
184                let byte_idx = i / 8;
185                let bit_idx = i % 8;
186                bits[byte_idx] |= 1 << bit_idx;
187            }
188        }
189
190        Self { bits, dimensions }
191    }
192
193    fn distance(&self, other: &Self) -> f32 {
194        // Hamming distance
195        let mut distance = 0u32;
196
197        for (&a, &b) in self.bits.iter().zip(&other.bits) {
198            distance += (a ^ b).count_ones();
199        }
200
201        distance as f32
202    }
203
204    fn reconstruct(&self) -> Vec<f32> {
205        let mut result = Vec::with_capacity(self.dimensions);
206
207        for i in 0..self.dimensions {
208            let byte_idx = i / 8;
209            let bit_idx = i % 8;
210            let bit = (self.bits[byte_idx] >> bit_idx) & 1;
211            result.push(if bit == 1 { 1.0 } else { -1.0 });
212        }
213
214        result
215    }
216}
217
218// Helper functions
219
220fn euclidean_squared(a: &[f32], b: &[f32]) -> f32 {
221    a.iter()
222        .zip(b)
223        .map(|(&x, &y)| {
224            let diff = x - y;
225            diff * diff
226        })
227        .sum()
228}
229
230fn kmeans_clustering(vectors: &[Vec<f32>], k: usize, iterations: usize) -> Vec<Vec<f32>> {
231    use rand::seq::SliceRandom;
232    use rand::thread_rng;
233
234    let mut rng = thread_rng();
235
236    // Initialize centroids randomly
237    let mut centroids: Vec<Vec<f32>> = vectors.choose_multiple(&mut rng, k).cloned().collect();
238
239    for _ in 0..iterations {
240        // Assign vectors to nearest centroid
241        let mut assignments = vec![Vec::new(); k];
242
243        for vector in vectors {
244            let nearest = centroids
245                .iter()
246                .enumerate()
247                .min_by(|(_, a), (_, b)| {
248                    let dist_a = euclidean_squared(vector, a);
249                    let dist_b = euclidean_squared(vector, b);
250                    dist_a.partial_cmp(&dist_b).unwrap()
251                })
252                .map(|(idx, _)| idx)
253                .unwrap_or(0);
254
255            assignments[nearest].push(vector.clone());
256        }
257
258        // Update centroids
259        for (centroid, assigned) in centroids.iter_mut().zip(&assignments) {
260            if !assigned.is_empty() {
261                let dim = centroid.len();
262                *centroid = vec![0.0; dim];
263
264                for vector in assigned {
265                    for (i, &v) in vector.iter().enumerate() {
266                        centroid[i] += v;
267                    }
268                }
269
270                let count = assigned.len() as f32;
271                for v in centroid.iter_mut() {
272                    *v /= count;
273                }
274            }
275        }
276    }
277
278    centroids
279}
280
281#[cfg(test)]
282mod tests {
283    use super::*;
284
285    #[test]
286    fn test_scalar_quantization() {
287        let vector = vec![1.0, 2.0, 3.0, 4.0, 5.0];
288        let quantized = ScalarQuantized::quantize(&vector);
289        let reconstructed = quantized.reconstruct();
290
291        // Check approximate reconstruction
292        for (orig, recon) in vector.iter().zip(&reconstructed) {
293            assert!((orig - recon).abs() < 0.1);
294        }
295    }
296
297    #[test]
298    fn test_binary_quantization() {
299        let vector = vec![1.0, -1.0, 2.0, -2.0, 0.5];
300        let quantized = BinaryQuantized::quantize(&vector);
301
302        assert_eq!(quantized.dimensions, 5);
303        assert_eq!(quantized.bits.len(), 1); // 5 bits fit in 1 byte
304    }
305
306    #[test]
307    fn test_binary_distance() {
308        let v1 = vec![1.0, 1.0, 1.0, 1.0];
309        let v2 = vec![1.0, 1.0, -1.0, -1.0];
310
311        let q1 = BinaryQuantized::quantize(&v1);
312        let q2 = BinaryQuantized::quantize(&v2);
313
314        let dist = q1.distance(&q2);
315        assert_eq!(dist, 2.0); // 2 bits differ
316    }
317
318    #[test]
319    fn test_scalar_quantization_roundtrip() {
320        // Test that quantize -> reconstruct produces values close to original
321        let test_vectors = vec![
322            vec![1.0, 2.0, 3.0, 4.0, 5.0],
323            vec![-10.0, -5.0, 0.0, 5.0, 10.0],
324            vec![0.1, 0.2, 0.3, 0.4, 0.5],
325            vec![100.0, 200.0, 300.0, 400.0, 500.0],
326        ];
327
328        for vector in test_vectors {
329            let quantized = ScalarQuantized::quantize(&vector);
330            let reconstructed = quantized.reconstruct();
331
332            assert_eq!(vector.len(), reconstructed.len());
333
334            for (orig, recon) in vector.iter().zip(reconstructed.iter()) {
335                // With 8-bit quantization, max error is roughly (max-min)/255
336                let max = vector.iter().copied().fold(f32::NEG_INFINITY, f32::max);
337                let min = vector.iter().copied().fold(f32::INFINITY, f32::min);
338                let max_error = (max - min) / 255.0 * 2.0; // Allow 2x for rounding
339
340                assert!(
341                    (orig - recon).abs() < max_error,
342                    "Roundtrip error too large: orig={}, recon={}, error={}",
343                    orig,
344                    recon,
345                    (orig - recon).abs()
346                );
347            }
348        }
349    }
350
351    #[test]
352    fn test_scalar_distance_symmetry() {
353        // Test that distance(a, b) == distance(b, a)
354        let v1 = vec![1.0, 2.0, 3.0, 4.0, 5.0];
355        let v2 = vec![2.0, 3.0, 4.0, 5.0, 6.0];
356
357        let q1 = ScalarQuantized::quantize(&v1);
358        let q2 = ScalarQuantized::quantize(&v2);
359
360        let dist_ab = q1.distance(&q2);
361        let dist_ba = q2.distance(&q1);
362
363        // Distance should be symmetric (within floating point precision)
364        assert!(
365            (dist_ab - dist_ba).abs() < 0.01,
366            "Distance is not symmetric: d(a,b)={}, d(b,a)={}",
367            dist_ab,
368            dist_ba
369        );
370    }
371
372    #[test]
373    fn test_scalar_distance_different_scales() {
374        // Test distance calculation with vectors that have different scales
375        let v1 = vec![1.0, 2.0, 3.0, 4.0, 5.0]; // range: 4.0
376        let v2 = vec![10.0, 20.0, 30.0, 40.0, 50.0]; // range: 40.0
377
378        let q1 = ScalarQuantized::quantize(&v1);
379        let q2 = ScalarQuantized::quantize(&v2);
380
381        let dist_ab = q1.distance(&q2);
382        let dist_ba = q2.distance(&q1);
383
384        // With average scaling, symmetry should be maintained
385        assert!(
386            (dist_ab - dist_ba).abs() < 0.01,
387            "Distance with different scales not symmetric: d(a,b)={}, d(b,a)={}",
388            dist_ab,
389            dist_ba
390        );
391    }
392
393    #[test]
394    fn test_scalar_quantization_edge_cases() {
395        // Test with all same values
396        let same_values = vec![5.0, 5.0, 5.0, 5.0];
397        let quantized = ScalarQuantized::quantize(&same_values);
398        let reconstructed = quantized.reconstruct();
399
400        for (orig, recon) in same_values.iter().zip(reconstructed.iter()) {
401            assert!((orig - recon).abs() < 0.01);
402        }
403
404        // Test with extreme ranges
405        let extreme = vec![f32::MIN / 1e10, 0.0, f32::MAX / 1e10];
406        let quantized = ScalarQuantized::quantize(&extreme);
407        let reconstructed = quantized.reconstruct();
408
409        assert_eq!(extreme.len(), reconstructed.len());
410    }
411
412    #[test]
413    fn test_binary_distance_symmetry() {
414        // Test that binary distance is symmetric
415        let v1 = vec![1.0, -1.0, 1.0, -1.0];
416        let v2 = vec![1.0, 1.0, -1.0, -1.0];
417
418        let q1 = BinaryQuantized::quantize(&v1);
419        let q2 = BinaryQuantized::quantize(&v2);
420
421        let dist_ab = q1.distance(&q2);
422        let dist_ba = q2.distance(&q1);
423
424        assert_eq!(
425            dist_ab, dist_ba,
426            "Binary distance not symmetric: d(a,b)={}, d(b,a)={}",
427            dist_ab, dist_ba
428        );
429    }
430}