1use crate::error::Result;
4use serde::{Deserialize, Serialize};
5
6pub trait QuantizedVector: Send + Sync {
8 fn quantize(vector: &[f32]) -> Self;
10
11 fn distance(&self, other: &Self) -> f32;
13
14 fn reconstruct(&self) -> Vec<f32>;
16}
17
18#[derive(Debug, Clone, Serialize, Deserialize)]
20pub struct ScalarQuantized {
21 pub data: Vec<u8>,
23 pub min: f32,
25 pub scale: f32,
27}
28
29impl QuantizedVector for ScalarQuantized {
30 fn quantize(vector: &[f32]) -> Self {
31 let min = vector.iter().copied().fold(f32::INFINITY, f32::min);
32 let max = vector.iter().copied().fold(f32::NEG_INFINITY, f32::max);
33
34 let scale = if (max - min).abs() < f32::EPSILON {
36 1.0 } else {
38 (max - min) / 255.0
39 };
40
41 let data = vector
42 .iter()
43 .map(|&v| ((v - min) / scale).round().clamp(0.0, 255.0) as u8)
44 .collect();
45
46 Self { data, min, scale }
47 }
48
49 fn distance(&self, other: &Self) -> f32 {
50 let avg_scale = (self.scale + other.scale) / 2.0;
58
59 self.data
60 .iter()
61 .zip(&other.data)
62 .map(|(&a, &b)| {
63 let diff = a as i32 - b as i32;
64 (diff * diff) as f32
65 })
66 .sum::<f32>()
67 .sqrt()
68 * avg_scale
69 }
70
71 fn reconstruct(&self) -> Vec<f32> {
72 self.data
73 .iter()
74 .map(|&v| self.min + (v as f32) * self.scale)
75 .collect()
76 }
77}
78
79#[derive(Debug, Clone, Serialize, Deserialize)]
81pub struct ProductQuantized {
82 pub codes: Vec<u8>,
84 pub codebooks: Vec<Vec<Vec<f32>>>,
86}
87
88impl ProductQuantized {
89 pub fn train(
91 vectors: &[Vec<f32>],
92 num_subspaces: usize,
93 codebook_size: usize,
94 iterations: usize,
95 ) -> Result<Self> {
96 if vectors.is_empty() {
97 return Err(crate::error::RuvectorError::InvalidInput(
98 "Cannot train on empty vector set".into(),
99 ));
100 }
101 if vectors[0].is_empty() {
102 return Err(crate::error::RuvectorError::InvalidInput(
103 "Cannot train on vectors with zero dimensions".into(),
104 ));
105 }
106 if codebook_size > 256 {
107 return Err(crate::error::RuvectorError::InvalidParameter(
108 format!("Codebook size {} exceeds u8 maximum of 256", codebook_size),
109 ));
110 }
111 let dimensions = vectors[0].len();
112 let subspace_dim = dimensions / num_subspaces;
113
114 let mut codebooks = Vec::with_capacity(num_subspaces);
115
116 for subspace_idx in 0..num_subspaces {
118 let start = subspace_idx * subspace_dim;
119 let end = start + subspace_dim;
120
121 let subspace_vectors: Vec<Vec<f32>> =
123 vectors.iter().map(|v| v[start..end].to_vec()).collect();
124
125 let codebook = kmeans_clustering(&subspace_vectors, codebook_size, iterations);
127 codebooks.push(codebook);
128 }
129
130 Ok(Self {
131 codes: vec![],
132 codebooks,
133 })
134 }
135
136 pub fn encode(&self, vector: &[f32]) -> Vec<u8> {
138 let num_subspaces = self.codebooks.len();
139 let subspace_dim = vector.len() / num_subspaces;
140
141 let mut codes = Vec::with_capacity(num_subspaces);
142
143 for (subspace_idx, codebook) in self.codebooks.iter().enumerate() {
144 let start = subspace_idx * subspace_dim;
145 let end = start + subspace_dim;
146 let subvector = &vector[start..end];
147
148 let code = codebook
150 .iter()
151 .enumerate()
152 .min_by(|(_, a), (_, b)| {
153 let dist_a = euclidean_squared(subvector, a);
154 let dist_b = euclidean_squared(subvector, b);
155 dist_a.partial_cmp(&dist_b).unwrap()
156 })
157 .map(|(idx, _)| idx as u8)
158 .unwrap_or(0);
159
160 codes.push(code);
161 }
162
163 codes
164 }
165}
166
167#[derive(Debug, Clone, Serialize, Deserialize)]
169pub struct BinaryQuantized {
170 pub bits: Vec<u8>,
172 pub dimensions: usize,
174}
175
176impl QuantizedVector for BinaryQuantized {
177 fn quantize(vector: &[f32]) -> Self {
178 let dimensions = vector.len();
179 let num_bytes = (dimensions + 7) / 8;
180 let mut bits = vec![0u8; num_bytes];
181
182 for (i, &v) in vector.iter().enumerate() {
183 if v > 0.0 {
184 let byte_idx = i / 8;
185 let bit_idx = i % 8;
186 bits[byte_idx] |= 1 << bit_idx;
187 }
188 }
189
190 Self { bits, dimensions }
191 }
192
193 fn distance(&self, other: &Self) -> f32 {
194 let mut distance = 0u32;
196
197 for (&a, &b) in self.bits.iter().zip(&other.bits) {
198 distance += (a ^ b).count_ones();
199 }
200
201 distance as f32
202 }
203
204 fn reconstruct(&self) -> Vec<f32> {
205 let mut result = Vec::with_capacity(self.dimensions);
206
207 for i in 0..self.dimensions {
208 let byte_idx = i / 8;
209 let bit_idx = i % 8;
210 let bit = (self.bits[byte_idx] >> bit_idx) & 1;
211 result.push(if bit == 1 { 1.0 } else { -1.0 });
212 }
213
214 result
215 }
216}
217
218fn euclidean_squared(a: &[f32], b: &[f32]) -> f32 {
221 a.iter()
222 .zip(b)
223 .map(|(&x, &y)| {
224 let diff = x - y;
225 diff * diff
226 })
227 .sum()
228}
229
230fn kmeans_clustering(vectors: &[Vec<f32>], k: usize, iterations: usize) -> Vec<Vec<f32>> {
231 use rand::seq::SliceRandom;
232 use rand::thread_rng;
233
234 let mut rng = thread_rng();
235
236 let mut centroids: Vec<Vec<f32>> = vectors.choose_multiple(&mut rng, k).cloned().collect();
238
239 for _ in 0..iterations {
240 let mut assignments = vec![Vec::new(); k];
242
243 for vector in vectors {
244 let nearest = centroids
245 .iter()
246 .enumerate()
247 .min_by(|(_, a), (_, b)| {
248 let dist_a = euclidean_squared(vector, a);
249 let dist_b = euclidean_squared(vector, b);
250 dist_a.partial_cmp(&dist_b).unwrap()
251 })
252 .map(|(idx, _)| idx)
253 .unwrap_or(0);
254
255 assignments[nearest].push(vector.clone());
256 }
257
258 for (centroid, assigned) in centroids.iter_mut().zip(&assignments) {
260 if !assigned.is_empty() {
261 let dim = centroid.len();
262 *centroid = vec![0.0; dim];
263
264 for vector in assigned {
265 for (i, &v) in vector.iter().enumerate() {
266 centroid[i] += v;
267 }
268 }
269
270 let count = assigned.len() as f32;
271 for v in centroid.iter_mut() {
272 *v /= count;
273 }
274 }
275 }
276 }
277
278 centroids
279}
280
281#[cfg(test)]
282mod tests {
283 use super::*;
284
285 #[test]
286 fn test_scalar_quantization() {
287 let vector = vec![1.0, 2.0, 3.0, 4.0, 5.0];
288 let quantized = ScalarQuantized::quantize(&vector);
289 let reconstructed = quantized.reconstruct();
290
291 for (orig, recon) in vector.iter().zip(&reconstructed) {
293 assert!((orig - recon).abs() < 0.1);
294 }
295 }
296
297 #[test]
298 fn test_binary_quantization() {
299 let vector = vec![1.0, -1.0, 2.0, -2.0, 0.5];
300 let quantized = BinaryQuantized::quantize(&vector);
301
302 assert_eq!(quantized.dimensions, 5);
303 assert_eq!(quantized.bits.len(), 1); }
305
306 #[test]
307 fn test_binary_distance() {
308 let v1 = vec![1.0, 1.0, 1.0, 1.0];
309 let v2 = vec![1.0, 1.0, -1.0, -1.0];
310
311 let q1 = BinaryQuantized::quantize(&v1);
312 let q2 = BinaryQuantized::quantize(&v2);
313
314 let dist = q1.distance(&q2);
315 assert_eq!(dist, 2.0); }
317
318 #[test]
319 fn test_scalar_quantization_roundtrip() {
320 let test_vectors = vec![
322 vec![1.0, 2.0, 3.0, 4.0, 5.0],
323 vec![-10.0, -5.0, 0.0, 5.0, 10.0],
324 vec![0.1, 0.2, 0.3, 0.4, 0.5],
325 vec![100.0, 200.0, 300.0, 400.0, 500.0],
326 ];
327
328 for vector in test_vectors {
329 let quantized = ScalarQuantized::quantize(&vector);
330 let reconstructed = quantized.reconstruct();
331
332 assert_eq!(vector.len(), reconstructed.len());
333
334 for (orig, recon) in vector.iter().zip(reconstructed.iter()) {
335 let max = vector.iter().copied().fold(f32::NEG_INFINITY, f32::max);
337 let min = vector.iter().copied().fold(f32::INFINITY, f32::min);
338 let max_error = (max - min) / 255.0 * 2.0; assert!(
341 (orig - recon).abs() < max_error,
342 "Roundtrip error too large: orig={}, recon={}, error={}",
343 orig,
344 recon,
345 (orig - recon).abs()
346 );
347 }
348 }
349 }
350
351 #[test]
352 fn test_scalar_distance_symmetry() {
353 let v1 = vec![1.0, 2.0, 3.0, 4.0, 5.0];
355 let v2 = vec![2.0, 3.0, 4.0, 5.0, 6.0];
356
357 let q1 = ScalarQuantized::quantize(&v1);
358 let q2 = ScalarQuantized::quantize(&v2);
359
360 let dist_ab = q1.distance(&q2);
361 let dist_ba = q2.distance(&q1);
362
363 assert!(
365 (dist_ab - dist_ba).abs() < 0.01,
366 "Distance is not symmetric: d(a,b)={}, d(b,a)={}",
367 dist_ab,
368 dist_ba
369 );
370 }
371
372 #[test]
373 fn test_scalar_distance_different_scales() {
374 let v1 = vec![1.0, 2.0, 3.0, 4.0, 5.0]; let v2 = vec![10.0, 20.0, 30.0, 40.0, 50.0]; let q1 = ScalarQuantized::quantize(&v1);
379 let q2 = ScalarQuantized::quantize(&v2);
380
381 let dist_ab = q1.distance(&q2);
382 let dist_ba = q2.distance(&q1);
383
384 assert!(
386 (dist_ab - dist_ba).abs() < 0.01,
387 "Distance with different scales not symmetric: d(a,b)={}, d(b,a)={}",
388 dist_ab,
389 dist_ba
390 );
391 }
392
393 #[test]
394 fn test_scalar_quantization_edge_cases() {
395 let same_values = vec![5.0, 5.0, 5.0, 5.0];
397 let quantized = ScalarQuantized::quantize(&same_values);
398 let reconstructed = quantized.reconstruct();
399
400 for (orig, recon) in same_values.iter().zip(reconstructed.iter()) {
401 assert!((orig - recon).abs() < 0.01);
402 }
403
404 let extreme = vec![f32::MIN / 1e10, 0.0, f32::MAX / 1e10];
406 let quantized = ScalarQuantized::quantize(&extreme);
407 let reconstructed = quantized.reconstruct();
408
409 assert_eq!(extreme.len(), reconstructed.len());
410 }
411
412 #[test]
413 fn test_binary_distance_symmetry() {
414 let v1 = vec![1.0, -1.0, 1.0, -1.0];
416 let v2 = vec![1.0, 1.0, -1.0, -1.0];
417
418 let q1 = BinaryQuantized::quantize(&v1);
419 let q2 = BinaryQuantized::quantize(&v2);
420
421 let dist_ab = q1.distance(&q2);
422 let dist_ba = q2.distance(&q1);
423
424 assert_eq!(
425 dist_ab, dist_ba,
426 "Binary distance not symmetric: d(a,b)={}, d(b,a)={}",
427 dist_ab, dist_ba
428 );
429 }
430}