1use crate::error::{Result, RuvectorError};
7use crate::types::{DistanceMetric, VectorId};
8use serde::{Deserialize, Serialize};
9use std::collections::{HashMap, HashSet};
10use std::time::{SystemTime, UNIX_EPOCH};
11use uuid::Uuid;
12
13#[derive(Debug, Clone, Serialize, Deserialize)]
15pub struct Hyperedge {
16 pub id: String,
18 pub nodes: Vec<VectorId>,
20 pub description: String,
22 pub embedding: Vec<f32>,
24 pub confidence: f32,
26 pub metadata: HashMap<String, String>,
28}
29
30#[derive(Debug, Clone, Serialize, Deserialize)]
32pub struct TemporalHyperedge {
33 pub hyperedge: Hyperedge,
35 pub timestamp: u64,
37 pub expires_at: Option<u64>,
39 pub granularity: TemporalGranularity,
41}
42
43#[derive(Debug, Clone, Copy, Serialize, Deserialize)]
45pub enum TemporalGranularity {
46 Hourly,
47 Daily,
48 Monthly,
49 Yearly,
50}
51
52impl Hyperedge {
53 pub fn new(
55 nodes: Vec<VectorId>,
56 description: String,
57 embedding: Vec<f32>,
58 confidence: f32,
59 ) -> Self {
60 Self {
61 id: Uuid::new_v4().to_string(),
62 nodes,
63 description,
64 embedding,
65 confidence: confidence.clamp(0.0, 1.0),
66 metadata: HashMap::new(),
67 }
68 }
69
70 pub fn order(&self) -> usize {
72 self.nodes.len()
73 }
74
75 pub fn contains_node(&self, node: &VectorId) -> bool {
77 self.nodes.contains(node)
78 }
79}
80
81impl TemporalHyperedge {
82 pub fn new(hyperedge: Hyperedge, granularity: TemporalGranularity) -> Self {
84 let timestamp = SystemTime::now()
85 .duration_since(UNIX_EPOCH)
86 .unwrap()
87 .as_secs();
88
89 Self {
90 hyperedge,
91 timestamp,
92 expires_at: None,
93 granularity,
94 }
95 }
96
97 pub fn is_expired(&self) -> bool {
99 if let Some(expires_at) = self.expires_at {
100 let now = SystemTime::now()
101 .duration_since(UNIX_EPOCH)
102 .unwrap()
103 .as_secs();
104 now > expires_at
105 } else {
106 false
107 }
108 }
109
110 pub fn time_bucket(&self) -> u64 {
112 match self.granularity {
113 TemporalGranularity::Hourly => self.timestamp / 3600,
114 TemporalGranularity::Daily => self.timestamp / 86400,
115 TemporalGranularity::Monthly => self.timestamp / (86400 * 30),
116 TemporalGranularity::Yearly => self.timestamp / (86400 * 365),
117 }
118 }
119}
120
121pub struct HypergraphIndex {
123 entities: HashMap<VectorId, Vec<f32>>,
125 hyperedges: HashMap<String, Hyperedge>,
127 temporal_index: HashMap<u64, Vec<String>>,
129 entity_to_hyperedges: HashMap<VectorId, HashSet<String>>,
131 hyperedge_to_entities: HashMap<String, HashSet<VectorId>>,
133 distance_metric: DistanceMetric,
135}
136
137impl HypergraphIndex {
138 pub fn new(distance_metric: DistanceMetric) -> Self {
140 Self {
141 entities: HashMap::new(),
142 hyperedges: HashMap::new(),
143 temporal_index: HashMap::new(),
144 entity_to_hyperedges: HashMap::new(),
145 hyperedge_to_entities: HashMap::new(),
146 distance_metric,
147 }
148 }
149
150 pub fn add_entity(&mut self, id: VectorId, embedding: Vec<f32>) {
152 self.entities.insert(id.clone(), embedding);
153 self.entity_to_hyperedges
154 .entry(id)
155 .or_insert_with(HashSet::new);
156 }
157
158 pub fn add_hyperedge(&mut self, hyperedge: Hyperedge) -> Result<()> {
160 let edge_id = hyperedge.id.clone();
161
162 for node in &hyperedge.nodes {
164 if !self.entities.contains_key(node) {
165 return Err(RuvectorError::InvalidInput(format!(
166 "Entity {} not found in hypergraph",
167 node
168 )));
169 }
170 }
171
172 for node in &hyperedge.nodes {
174 self.entity_to_hyperedges
175 .entry(node.clone())
176 .or_insert_with(HashSet::new)
177 .insert(edge_id.clone());
178 }
179
180 let nodes_set: HashSet<VectorId> = hyperedge.nodes.iter().cloned().collect();
181 self.hyperedge_to_entities
182 .insert(edge_id.clone(), nodes_set);
183
184 self.hyperedges.insert(edge_id, hyperedge);
185 Ok(())
186 }
187
188 pub fn add_temporal_hyperedge(&mut self, temporal_edge: TemporalHyperedge) -> Result<()> {
190 let bucket = temporal_edge.time_bucket();
191 let edge_id = temporal_edge.hyperedge.id.clone();
192
193 self.add_hyperedge(temporal_edge.hyperedge)?;
194
195 self.temporal_index
196 .entry(bucket)
197 .or_insert_with(Vec::new)
198 .push(edge_id);
199
200 Ok(())
201 }
202
203 pub fn search_hyperedges(&self, query_embedding: &[f32], k: usize) -> Vec<(String, f32)> {
205 let mut results: Vec<(String, f32)> = self
206 .hyperedges
207 .iter()
208 .map(|(id, edge)| {
209 let distance = self.compute_distance(query_embedding, &edge.embedding);
210 (id.clone(), distance)
211 })
212 .collect();
213
214 results.sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap());
215 results.truncate(k);
216 results
217 }
218
219 pub fn k_hop_neighbors(&self, start_node: VectorId, k: usize) -> HashSet<VectorId> {
222 let mut visited = HashSet::new();
223 let mut current_layer = HashSet::new();
224 current_layer.insert(start_node.clone());
225 visited.insert(start_node); for _hop in 0..k {
228 let mut next_layer = HashSet::new();
229
230 for node in current_layer.iter() {
231 if let Some(hyperedges) = self.entity_to_hyperedges.get(node) {
233 for edge_id in hyperedges {
234 if let Some(nodes) = self.hyperedge_to_entities.get(edge_id) {
236 for neighbor in nodes.iter() {
237 if !visited.contains(neighbor) {
238 visited.insert(neighbor.clone());
239 next_layer.insert(neighbor.clone());
240 }
241 }
242 }
243 }
244 }
245 }
246
247 if next_layer.is_empty() {
248 break;
249 }
250 current_layer = next_layer;
251 }
252
253 visited
254 }
255
256 pub fn query_temporal_range(&self, start_bucket: u64, end_bucket: u64) -> Vec<String> {
258 let mut results = Vec::new();
259 for bucket in start_bucket..=end_bucket {
260 if let Some(edges) = self.temporal_index.get(&bucket) {
261 results.extend(edges.iter().cloned());
262 }
263 }
264 results
265 }
266
267 pub fn get_hyperedge(&self, id: &str) -> Option<&Hyperedge> {
269 self.hyperedges.get(id)
270 }
271
272 pub fn stats(&self) -> HypergraphStats {
274 let total_edges = self.hyperedges.len();
275 let total_entities = self.entities.len();
276 let avg_degree = if total_entities > 0 {
277 self.entity_to_hyperedges
278 .values()
279 .map(|edges| edges.len())
280 .sum::<usize>() as f32
281 / total_entities as f32
282 } else {
283 0.0
284 };
285
286 HypergraphStats {
287 total_entities,
288 total_hyperedges: total_edges,
289 avg_entity_degree: avg_degree,
290 }
291 }
292
293 fn compute_distance(&self, a: &[f32], b: &[f32]) -> f32 {
294 crate::distance::distance(a, b, self.distance_metric).unwrap_or(f32::MAX)
295 }
296}
297
298#[derive(Debug, Clone, Serialize, Deserialize)]
300pub struct HypergraphStats {
301 pub total_entities: usize,
302 pub total_hyperedges: usize,
303 pub avg_entity_degree: f32,
304}
305
306pub struct CausalMemory {
308 index: HypergraphIndex,
310 causal_counts: HashMap<(VectorId, VectorId), u32>,
312 latencies: HashMap<VectorId, f32>,
314 alpha: f32, beta: f32, gamma: f32, }
319
320impl CausalMemory {
321 pub fn new(distance_metric: DistanceMetric) -> Self {
323 Self {
324 index: HypergraphIndex::new(distance_metric),
325 causal_counts: HashMap::new(),
326 latencies: HashMap::new(),
327 alpha: 0.7,
328 beta: 0.2,
329 gamma: 0.1,
330 }
331 }
332
333 pub fn with_weights(mut self, alpha: f32, beta: f32, gamma: f32) -> Self {
335 self.alpha = alpha;
336 self.beta = beta;
337 self.gamma = gamma;
338 self
339 }
340
341 pub fn add_causal_edge(
343 &mut self,
344 cause: VectorId,
345 effect: VectorId,
346 context: Vec<VectorId>,
347 description: String,
348 embedding: Vec<f32>,
349 latency_ms: f32,
350 ) -> Result<()> {
351 let mut nodes = vec![cause.clone(), effect.clone()];
353 nodes.extend(context);
354
355 let hyperedge = Hyperedge::new(nodes, description, embedding, 1.0);
356 self.index.add_hyperedge(hyperedge)?;
357
358 *self
360 .causal_counts
361 .entry((cause.clone(), effect.clone()))
362 .or_insert(0) += 1;
363
364 let entry = self.latencies.entry(cause).or_insert(0.0);
366 *entry = (*entry + latency_ms) / 2.0; Ok(())
369 }
370
371 pub fn query_with_utility(
373 &self,
374 query_embedding: &[f32],
375 action_id: VectorId,
376 k: usize,
377 ) -> Vec<(String, f32)> {
378 let mut results: Vec<(String, f32)> = self
379 .index
380 .hyperedges
381 .iter()
382 .filter(|(_, edge)| edge.contains_node(&action_id))
383 .map(|(id, edge)| {
384 let similarity = 1.0
385 - self
386 .index
387 .compute_distance(query_embedding, &edge.embedding);
388 let causal_uplift = self.compute_causal_uplift(&edge.nodes);
389 let latency = self.latencies.get(&action_id).copied().unwrap_or(0.0);
390
391 let utility = self.alpha * similarity + self.beta * causal_uplift
392 - self.gamma * (latency / 1000.0); (id.clone(), utility)
395 })
396 .collect();
397
398 results.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap()); results.truncate(k);
400 results
401 }
402
403 fn compute_causal_uplift(&self, nodes: &[VectorId]) -> f32 {
404 if nodes.len() < 2 {
405 return 0.0;
406 }
407
408 let mut total_uplift = 0.0;
410 let mut count = 0;
411
412 for i in 0..nodes.len() - 1 {
413 for j in i + 1..nodes.len() {
414 if let Some(&success_count) = self
415 .causal_counts
416 .get(&(nodes[i].clone(), nodes[j].clone()))
417 {
418 total_uplift += (success_count as f32).ln_1p(); count += 1;
420 }
421 }
422 }
423
424 if count > 0 {
425 total_uplift / count as f32
426 } else {
427 0.0
428 }
429 }
430
431 pub fn index(&self) -> &HypergraphIndex {
433 &self.index
434 }
435}
436
437#[cfg(test)]
438mod tests {
439 use super::*;
440
441 #[test]
442 fn test_hyperedge_creation() {
443 let nodes = vec!["1".to_string(), "2".to_string(), "3".to_string()];
444 let desc = "Test relationship".to_string();
445 let embedding = vec![0.1, 0.2, 0.3];
446 let edge = Hyperedge::new(nodes, desc, embedding, 0.95);
447
448 assert_eq!(edge.order(), 3);
449 assert!(edge.contains_node(&"1".to_string()));
450 assert!(!edge.contains_node(&"4".to_string()));
451 assert_eq!(edge.confidence, 0.95);
452 }
453
454 #[test]
455 fn test_temporal_hyperedge() {
456 let nodes = vec!["1".to_string(), "2".to_string()];
457 let desc = "Temporal relationship".to_string();
458 let embedding = vec![0.1, 0.2];
459 let edge = Hyperedge::new(nodes, desc, embedding, 1.0);
460
461 let temporal = TemporalHyperedge::new(edge, TemporalGranularity::Hourly);
462
463 assert!(!temporal.is_expired());
464 assert!(temporal.time_bucket() > 0);
465 }
466
467 #[test]
468 fn test_hypergraph_index() {
469 let mut index = HypergraphIndex::new(DistanceMetric::Cosine);
470
471 index.add_entity("1".to_string(), vec![1.0, 0.0, 0.0]);
473 index.add_entity("2".to_string(), vec![0.0, 1.0, 0.0]);
474 index.add_entity("3".to_string(), vec![0.0, 0.0, 1.0]);
475
476 let edge = Hyperedge::new(
478 vec!["1".to_string(), "2".to_string(), "3".to_string()],
479 "Triple relationship".to_string(),
480 vec![0.5, 0.5, 0.5],
481 0.9,
482 );
483 index.add_hyperedge(edge).unwrap();
484
485 let stats = index.stats();
486 assert_eq!(stats.total_entities, 3);
487 assert_eq!(stats.total_hyperedges, 1);
488 }
489
490 #[test]
491 fn test_k_hop_neighbors() {
492 let mut index = HypergraphIndex::new(DistanceMetric::Cosine);
493
494 index.add_entity("1".to_string(), vec![1.0]);
496 index.add_entity("2".to_string(), vec![1.0]);
497 index.add_entity("3".to_string(), vec![1.0]);
498 index.add_entity("4".to_string(), vec![1.0]);
499
500 let edge1 = Hyperedge::new(vec!["1".to_string(), "2".to_string()], "e1".to_string(), vec![1.0], 1.0);
501 let edge2 = Hyperedge::new(vec!["2".to_string(), "3".to_string()], "e2".to_string(), vec![1.0], 1.0);
502 let edge3 = Hyperedge::new(vec!["3".to_string(), "4".to_string()], "e3".to_string(), vec![1.0], 1.0);
503
504 index.add_hyperedge(edge1).unwrap();
505 index.add_hyperedge(edge2).unwrap();
506 index.add_hyperedge(edge3).unwrap();
507
508 let neighbors = index.k_hop_neighbors("1".to_string(), 2);
509 assert!(neighbors.contains(&"1".to_string()));
510 assert!(neighbors.contains(&"2".to_string()));
511 assert!(neighbors.contains(&"3".to_string()));
512 }
513
514 #[test]
515 fn test_causal_memory() {
516 let mut memory = CausalMemory::new(DistanceMetric::Cosine);
517
518 memory.index.add_entity("1".to_string(), vec![1.0, 0.0]);
519 memory.index.add_entity("2".to_string(), vec![0.0, 1.0]);
520
521 memory
522 .add_causal_edge(
523 "1".to_string(),
524 "2".to_string(),
525 vec![],
526 "Action 1 causes effect 2".to_string(),
527 vec![0.5, 0.5],
528 100.0,
529 )
530 .unwrap();
531
532 let results = memory.query_with_utility(&[0.6, 0.4], "1".to_string(), 5);
533 assert!(!results.is_empty());
534 }
535}