1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
//! ### UnitOfWork
//! [UnitOfWork][UOW] is to a unit that manages atomic transaction.
//!
//! Its [executor][Exec] is supposed to be shared with its sub type [Repository][TRepository].
//!
//! `commit`, and `rollback`, is governed by this implementation.
//!
//! When events are collected in `Repository`[TRepository], you can collect them
//!
//! automatically thanks to `_commit_hook` method.
//!
//! [UOW]: crate::unit_of_work::UnitOfWork
//! [TRepository]: crate::repository::TRepository
//! [Exec]: crate::unit_of_work::Executor
//! [Handler]: crate::unit_of_work::Handler
//!
//! #### Usage Pattern
//!
//! ```ignore
//! // Intialize Uow, start transaction
//! let mut uow = UnitOfWork::<Repository<TaskAggregate>, Executor,TaskAggregate>::new(context).await;
//!
//! // Fetch data
//! let mut aggregate = uow.repository().get(&cmd.aggregate_id).await?;
//!
//! // Process business logic
//! aggregate.process_business_logic(cmd)?;
//!
//! // Apply changes
//! uow.repository().update(&mut aggregate).await?;
//!
//! // Commit transaction
//! uow.commit().await?;
//! ```
//!
//!
//!
//! ### Handler
//! [Handler] is what orchestrates operations from data fetching, business logic operation and store
//! changes back to db. This is where tranasction occurs.
//!
//! ### Example
//! ```ignore
//! struct ApplicationHandler;
//! impl Handler for ApplicationHandler{
//!     type E = ApplicationExecutor;
//!     type R = ApplicationRepository<Aggregate>
//! }
//!
//! impl ApplicationHandler{
//!     pub async fn serve_request(
//!         cmd: Command1,
//!         context: AtomicContextManager,
//! ) -> Result<(),ServiceError> {
//!     let mut uow = TaskHandler::uow(context).await;
//! }
//! ```

use crate::{
	prelude::{AtomicContextManager, BaseError},
	repository::TRepository,
};
use async_trait::async_trait;
use std::sync::Arc;
use tokio::sync::RwLock;

/// Executor is abstract implementation of whatever storage layer you use.
/// Among examples are RDBMS, Queue, NoSQLs.
#[async_trait]
pub trait Executor: Sync + Send {
	async fn begin(&mut self) -> Result<(), BaseError>;
	async fn commit(&mut self) -> Result<(), BaseError>;
	async fn rollback(&mut self) -> Result<(), BaseError>;
}

#[async_trait]
pub trait TUnitOfWork: Send + Sync {
	/// Creeate UOW object with context manager.

	async fn begin(&mut self) -> Result<(), BaseError>;

	async fn commit(&mut self) -> Result<(), BaseError>;

	async fn rollback(self) -> Result<(), BaseError>;
}

pub trait TClone {
	fn clone(&self) -> Self;
}

pub trait TRepositoyCallable<R>
where
	R: TRepository,
{
	fn repository(&mut self) -> &mut R;
}

#[derive(Clone)]
pub struct UnitOfWork<R, E>
where
	R: TRepository,
	E: Executor,
{
	/// real transaction executor
	executor: Arc<RwLock<E>>,
	/// global event event_queue
	context: AtomicContextManager,

	/// event local repository for Executor
	pub repository: R,
}
impl<R, E> UnitOfWork<R, E>
where
	R: TRepository,
	E: Executor,
{
	pub fn new(context: AtomicContextManager, executor: Arc<RwLock<E>>, repository: R) -> Self {
		Self { repository, context, executor }
	}
	async fn _commit(&mut self) -> Result<(), BaseError> {
		let mut executor = self.executor.write().await;

		executor.commit().await
	}
	/// commit_hook is invoked right before the calling for commit
	/// which sorts out and processes outboxes and internally processable events.
	async fn _commit_hook(&mut self) -> Result<(), BaseError> {
		let cxt = self.clone_context();
		let event_queue = &mut cxt.write().await;
		let mut outboxes = vec![];

		for e in self.repository.get_events() {
			if e.externally_notifiable() {
				outboxes.push(e.outbox());
			};
			if e.internally_notifiable() {
				event_queue.push_back(e.message_clone());
			}
		}
		if !outboxes.is_empty() {
			self.repository().save_outbox(outboxes).await;
		}
		Ok(())
	}
}

#[async_trait]
impl<R, E> TUnitOfWork for UnitOfWork<R, E>
where
	R: TRepository,
	E: Executor,
{
	/// Begin transaction.
	async fn begin(&mut self) -> Result<(), BaseError> {
		let mut executor = self.executor.write().await;
		executor.begin().await
	}

	/// Commit transaction.
	async fn commit(&mut self) -> Result<(), BaseError> {
		// To drop uow itself!

		// run commit hook
		self._commit_hook().await?;

		// commit
		self._commit().await
	}

	/// Rollback transaction.
	async fn rollback(self) -> Result<(), BaseError> {
		let mut executor = self.executor.write().await;
		executor.rollback().await
	}
}

impl<R, E> TRepositoyCallable<R> for UnitOfWork<R, E>
where
	R: TRepository,
	E: Executor,
{
	fn repository(&mut self) -> &mut R {
		&mut self.repository
	}
}

pub trait TCloneContext {
	fn clone_context(&self) -> AtomicContextManager;
}

impl<R, E> TCloneContext for UnitOfWork<R, E>
where
	R: TRepository,
	E: Executor,
{
	fn clone_context(&self) -> AtomicContextManager {
		Arc::clone(&self.context)
	}
}

impl<R, E> TClone for UnitOfWork<R, E>
where
	R: TRepository + TClone,
	E: Executor,
{
	fn clone(&self) -> Self {
		Self {
			executor: self.executor.clone(),
			context: self.context.clone(),
			repository: self.repository.clone(),
		}
	}
}