1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
use crate::{FType, Func, F1D, F2D, F3D, FND};

impl F1D {
    /// Computes the nth-derivative
    /// ```
    /// use ruut_functions::{f1d, F1D};
    ///
    /// let f = f1d!("x^log(x)");
    /// let df = f.derive(1);
    /// assert_eq!(df, f1d!("2ln(x)x^ln(x)/x"));
    /// assert_eq!(df.derive(1), f.derive(2));
    /// ```
    pub fn derive(&self, order: usize) -> Self {
        F1D(self.0.derive_nth('x', order))
    }
}
impl F2D {
    /// Computes the nth-derivative
    /// ```
    /// use ruut_functions::{f2d,F2D};
    /// assert_eq!(f2d!("x+y^2").derive('y', 2), f2d!("2"));
    /// ```
    pub fn derive(&self, var: char, order: usize) -> Self {
        F2D(self.0.derive_nth(var, order))
    }
    /// Computes the gradient
    /// ```
    /// use ruut_functions::{f2d, F2D};
    /// assert_eq!(f2d!("x+y^2").gradient(), vec![f2d!("1"), f2d!("2y")]);
    /// ```
    pub fn gradient(&self) -> Vec<Self> {
        vec![self.derive('x', 1), self.derive('y', 1)]
    }

    /// Computes the hessian matrix
    /// ```
    /// use ruut_functions::{f2d, F2D};
    /// let f = f2d!("x^3+y^2");
    /// let hessian = f.hessian();
    /// assert_eq!(hessian, vec![vec![f2d!("6x"), f2d!("0")],
    ///                          vec![f2d!("0"), f2d!("2")]]);
    /// ```
    pub fn hessian(&self) -> Vec<Vec<Self>> {
        vec![
            vec![self.derive('x', 2), self.derive('x', 1).derive('y', 1)],
            vec![self.derive('y', 1).derive('x', 1), self.derive('y', 2)],
        ]
    }
}

impl F3D {
    /// Computes the nth-derivative
    /// ```
    /// use ruut_functions::{f3d, F3D};
    /// assert_eq!(f3d!("x+zy^2").derive('y', 2), f3d!("2z"));
    /// ```
    pub fn derive(&self, var: char, order: usize) -> Self {
        F3D(self.0.derive_nth(var, order))
    }
    /// Computes the gradient
    /// ```
    /// use ruut_functions::{f3d, F3D};
    /// assert_eq!(f3d!("x+zy^2").gradient(), vec![f3d!("1"), f3d!("2yz"), f3d!("y^2")]);
    /// ```
    pub fn gradient(&self) -> Vec<Self> {
        vec![
            self.derive('x', 1),
            self.derive('y', 1),
            self.derive('z', 1),
        ]
    }
    /// Computes the hessian
    /// ```
    /// use ruut_functions::{f3d, F3D};
    /// assert_eq!(f3d!("x^3+zy^2").hessian(), vec![vec![f3d!("6x"), f3d!("0"), f3d!("0")],
    ///                                             vec![f3d!("0"), f3d!("2z"), f3d!("2y")],
    ///                                             vec![f3d!("0"), f3d!("2y"), f3d!("0")]]);
    /// ```
    pub fn hessian(&self) -> Vec<Vec<Self>> {
        let dx = self.derive('x', 1);
        let dy = self.derive('y', 1);
        let dz = self.derive('z', 1);
        vec![
            vec![dx.derive('x', 1), dx.derive('y', 1), dx.derive('z', 1)],
            vec![dy.derive('x', 1), dy.derive('y', 1), dy.derive('z', 1)],
            vec![dz.derive('x', 1), dz.derive('y', 1), dz.derive('z', 1)],
        ]
    }
}

impl FND {
    /// Computes the nth-derivative wrt a variable
    /// ```
    /// use ruut_functions::{fnd,FND};
    /// let vars = ['f', 'z'];
    /// assert_eq!(fnd!("f^2+z", &vars).derive('f', 1), fnd!("2f", &vars));
    /// ```
    pub fn derive(&self, var: char, order: usize) -> Self {
        FND {
            vars: self.vars.clone(),
            func: self.func.derive_nth(var, order),
        }
    }

    /// Computes the gradient
    /// ```
    /// use ruut_functions::{fnd,FND};
    /// let vars = ['f', 'z'];
    /// assert_eq!(fnd!("f^2+z", &vars).gradient(), vec![fnd!("2f", &vars), fnd!("1", &vars)]);
    /// ```
    pub fn gradient(&self) -> Vec<Self> {
        let mut result = Vec::with_capacity(self.vars.len());
        for var in &self.vars {
            result.push(self.derive(*var, 1));
        }
        result
    }
    /// Computes the hessian
    /// ```
    /// use ruut_functions::{fnd,FND};
    /// let vars = ['f', 'z'];
    /// assert_eq!(fnd!("f^3+zf", &vars).hessian(), vec![vec![fnd!("6f", &vars), fnd!("1", &vars)],
    ///                                                  vec![fnd!("1", &vars), fnd!("0", &vars)]]);
    /// ```
    pub fn hessian(&self) -> Vec<Vec<Self>> {
        let mut result = Vec::new();

        // first derivative
        let mut first_deriv = Vec::with_capacity(self.vars.len());
        for var in &self.vars {
            first_deriv.push(self.derive(*var, 1));
        }

        for el in first_deriv {
            let mut gradient = Vec::with_capacity(self.vars.len());

            for var in &self.vars {
                gradient.push(el.derive(*var, 1))
            }
            result.push(gradient);
        }

        result
    }
}

impl Func {
    fn derive_nth(&self, var: char, order: usize) -> Self {
        let mut result = self.clone();
        for _ in 1..=order {
            result = result.derive(var);
        }
        result
    }
    fn derive(&self, var: char) -> Self {
        let res = match self {
            Self::Var(char) => {
                if *char == var {
                    Self::Num(1)
                } else {
                    Self::Num(0)
                }
            }
            Self::Num(_) | Self::Param(..) => Self::Num(0),
            Self::E | Self::PI => Self::Num(0),
            Self::Add(add) => add.iter().map(|term| term.derive(var)).sum::<Self>(),
            Self::Mul(mul) => {
                let mut result = Func::Num(0);
                for (i, term) in mul.iter().enumerate() {
                    let mut multipliers = term.derive(var);
                    for (j, other) in mul.iter().enumerate() {
                        if i != j {
                            multipliers *= other.clone()
                        }
                    }
                    result += multipliers;
                }

                result
            }
            Self::Pow(base, exp) => {
                if let Func::E = **base {
                    return exp.derive(var) * self.clone();
                }
                if let Func::Num(exp_val) = **exp {
                    return exp_val * base.derive(var) * base.clone().powi(exp_val - 1);
                }
                (Func::E.pow(*exp.clone() * Self::S(FType::Ln, base.clone()))).derive(var)
            }
            Self::S(kind, argument) => {
                let argument = Box::new(*argument.clone());
                let arg = argument.derive(var);

                match kind {
                    FType::Ln => arg / *argument,
                    FType::Sin => arg * Func::S(FType::Cos, argument),
                    FType::Cos => -1 * arg * Func::S(FType::Sin, argument),
                    FType::Tan => arg * Func::S(FType::Sec, argument).powi(2),
                    FType::Cot => -1 * arg * (Func::S(FType::Csc, argument)).powi(2),
                    FType::Sec => {
                        arg * Func::S(FType::Sec, argument.clone()) * Func::S(FType::Tan, argument)
                    }
                    FType::Csc => {
                        -1 * arg
                            * Func::S(FType::Cot, argument.clone())
                            * Func::S(FType::Csc, argument)
                    }
                    FType::ASin => arg / (1 - argument.powi(2)).pow(Func::Num(1) / Func::Num(2)),
                    FType::ACos => {
                        -1 * arg / (1 - argument.powi(2)).pow(Func::Num(1) / Func::Num(2))
                    }
                    FType::ATan => arg / (1 + argument.powi(2)),
                    FType::Sinh => arg * Func::S(FType::Cosh, argument),
                    FType::Cosh => arg * Func::S(FType::Sinh, argument),
                    FType::Tanh => arg * Func::S(FType::Sech, argument).powi(2),
                    FType::Coth => -1 * arg * Func::S(FType::Csch, argument).powi(2),
                    FType::Sech => {
                        -1 * arg
                            * Func::S(FType::Sech, argument.clone())
                            * Func::S(FType::Tanh, argument)
                    }
                    FType::Csch => {
                        -1 * arg
                            * Func::S(FType::Csch, argument.clone())
                            * Func::S(FType::Coth, argument)
                    }
                    FType::ASinh => arg / (1 + argument.powi(2)).pow(Func::Num(1) / Func::Num(2)),
                    FType::ACosh => arg / (argument.powi(2) - 1).pow(Func::Num(1) / Func::Num(2)),
                    FType::ATanh => arg / (1 - argument.powi(2)),
                    FType::Abs => arg * *argument.clone() / Func::S(FType::Abs, argument),
                }
            }
        };
        res
    }
}

#[test]
fn test_derive() {
    use crate::{f1d, f2d, f3d, fnd};

    assert_eq!(
        f1d!("x+ln(x)+x^2+sin(2x)").derive(1),
        f1d!("1+1/x+2cos(2x)+2x")
    );

    assert_eq!(f1d!("3x+7+e").derive(1), f1d!("3"));
    assert_eq!(f1d!("xsin(x)").derive(1), f1d!("sin(x)+xcos(x)"));
    assert_eq!(f1d!("tan(x^2)").derive(1), f1d!("2xsec(x^2)^2"));
    assert_eq!(f1d!("x^x").derive(1), f1d!("(ln(x)+1)e^(xln(x))"));
    assert_eq!(
        f3d!("xyz^2").gradient(),
        vec![f3d!("yz^2"), f3d!("xz^2"), f3d!("2xyz")]
    );
    // assert_eq!(f1d!("x/(x+1)").derive(1), f1d!("1/(x+1)^2"));
    assert_eq!(f1d!("1/(3e*x^2)").derive(1), f1d!("-2/(3e*x^3)"));
    assert_eq!(f1d!("cos(x)").derive(1), f1d!("-sin(x)"));
    assert_eq!(f1d!("sin(x)").derive(1), f1d!("cos(x)"));
    assert_eq!(f1d!("cot(x)").derive(1), f1d!("-csc(x)^2"));
    assert_eq!(f1d!("sec(x)").derive(1), f1d!("sec(x)tan(x)"));
    assert_eq!(f1d!("csc(x)").derive(1), f1d!("-csc(x)cot(x)"));
    assert_eq!(f1d!("asin(x)").derive(1), f1d!("1/(1-x^2)^(1/2)"));
    assert_eq!(f1d!("acos(x)").derive(1), f1d!("-1/(1-x^2)^(1/2)"));
    assert_eq!(f1d!("atan(x)").derive(1), f1d!("1/(1+x^2)"));
    assert_eq!(f1d!("sinh(x)").derive(1), f1d!("cosh(x)"));
    assert_eq!(f1d!("cosh(x)").derive(1), f1d!("sinh(x)"));
    assert_eq!(f1d!("tanh(x)").derive(1), f1d!("sech(x)^2"));
    assert_eq!(f1d!("coth(x)").derive(1), f1d!("-csch(x)^2"));
    assert_eq!(f1d!("sech(x)").derive(1), f1d!("-tanh(x)sech(x)"));
    assert_eq!(f1d!("csch(x)").derive(1), f1d!("-csch(x)coth(x)"));
    assert_eq!(f1d!("asinh(x)").derive(1), f1d!("1/(1+x^2)^(1/2)"));
    assert_eq!(f1d!("acosh(x)").derive(1), f1d!("1/(x^2-1)^(1/2)"));
    assert_eq!(f1d!("atanh(x)").derive(1), f1d!("1/(1-x^2)"));
    assert_eq!(f1d!("abs(x)").derive(1), f1d!("x/abs(x)"));

    // F2D
    assert_eq!(f2d!("xy+y^2").gradient(), vec![f2d!("y"), f2d!("x+2y")]);
    assert_eq!(
        f2d!("xy+y^2").hessian(),
        vec![vec![f2d!("0"), f2d!("1")], vec![f2d!("1"), f2d!("2")]]
    );

    // F3D
    assert_eq!(
        f3d!("xy+y^2+1/z").gradient(),
        vec![f3d!("y"), f3d!("x+2y"), f3d!("-1/z^2")]
    );
    assert_eq!(
        f3d!("xy+y^2+1/z").hessian(),
        vec![
            vec![f3d!("0"), f3d!("1"), f3d!("0")],
            vec![f3d!("1"), f3d!("2"), f3d!("0")],
            vec![f3d!("0"), f3d!("0"), f3d!("2/z^3")]
        ]
    );

    // FND
    let v = ['w', 'f'];
    assert_eq!(
        fnd!("w+f^2", &v).gradient(),
        vec![fnd!("1", &v), fnd!("2f", &v)]
    );

    assert_eq!(
        fnd!("w+f^2", &v).hessian(),
        vec![
            vec![fnd!("0", &v), fnd!("0", &v)],
            vec![fnd!("0", &v), fnd!("2", &v)]
        ]
    )
}