Expand description
§rusty_science
An easy to learn and use ML toolkit for rust
§Installation
[dependencies]
rusty_science = "0.1.1"
§Usage Example
use rusty_science::classification::knn::KNNClassifier;
let mut knn = KNNClassifier::new(3);
let data = vec![vec![1.0, 2.0], vec![2.0, 3.0], vec![3.0, 4.0]];
let labels = vec![0, 1, 0];
knn.fit(data, labels);
let prediction = knn.predict(vec![2.5, 3.5]);
println!("Predicted label: {}", prediction);
§Modules
classification
: A set of classification modelsclustering
: A set of clustering modelsdata
: A set of tools for the manipulation or importing of datalinear_models
: A set of linear modelsmetrics
: Tools to test the output of modelsregression
: A set of regression models
§License
Licensed under MIT.
§Contribution
Contributions are welcome! Please feel free to submit a pull request or file an issue.
§Acknowledgements
If applicable, acknowledge other libraries or individuals that helped in developing this crate.
§Contributors
Cooper Brown, Jack Welsh
Modules§
- classification
- clustering
- Clustering Algorithms
- data
- linear_
models - metrics
- regression