Crate rusty_science

Source
Expand description

§rusty_science

An easy to learn and use ML toolkit for rust

§Installation

[dependencies]
rusty_science = "0.1.1"

§Usage Example

use rusty_science::classification::knn::KNNClassifier;
let mut knn = KNNClassifier::new(3);
let data = vec![vec![1.0, 2.0], vec![2.0, 3.0], vec![3.0, 4.0]];
let labels = vec![0, 1, 0];
knn.fit(data, labels);
let prediction = knn.predict(vec![2.5, 3.5]);
println!("Predicted label: {}", prediction);

§Modules

  • classification: A set of classification models
  • clustering: A set of clustering models
  • data: A set of tools for the manipulation or importing of data
  • linear_models: A set of linear models
  • metrics: Tools to test the output of models
  • regression: A set of regression models

§License

Licensed under MIT.

§Contribution

Contributions are welcome! Please feel free to submit a pull request or file an issue.

§Acknowledgements

If applicable, acknowledge other libraries or individuals that helped in developing this crate.

§Contributors

Cooper Brown, Jack Welsh

Modules§

classification
clustering
Clustering Algorithms
data
linear_models
metrics
regression

Macros§

panic_dimension_mismatch
panic_labels_not_binary
panic_matrix_inversion
panic_missing_coefficients
panic_untrained