k_means_generating_cluster/
k-means_generating_cluster.rs1extern crate rusty_machine;
2extern crate rand;
3
4use rusty_machine::linalg::{Matrix, BaseMatrix};
5use rusty_machine::learning::k_means::KMeansClassifier;
6use rusty_machine::learning::UnSupModel;
7
8use rand::thread_rng;
9use rand::distributions::IndependentSample;
10use rand::distributions::normal::Normal;
11
12fn generate_data(centroids: &Matrix<f64>,
13 points_per_centroid: usize,
14 noise: f64)
15 -> Matrix<f64> {
16 assert!(centroids.cols() > 0, "Centroids cannot be empty.");
17 assert!(centroids.rows() > 0, "Centroids cannot be empty.");
18 assert!(noise >= 0f64, "Noise must be non-negative.");
19 let mut raw_cluster_data = Vec::with_capacity(centroids.rows() * points_per_centroid *
20 centroids.cols());
21
22 let mut rng = thread_rng();
23 let normal_rv = Normal::new(0f64, noise);
24
25 for _ in 0..points_per_centroid {
26 for centroid in centroids.iter_rows() {
28 let mut point = Vec::with_capacity(centroids.cols());
30 for feature in centroid {
31 point.push(feature + normal_rv.ind_sample(&mut rng));
32 }
33
34 raw_cluster_data.extend(point);
36 }
37 }
38
39 Matrix::new(centroids.rows() * points_per_centroid,
40 centroids.cols(),
41 raw_cluster_data)
42}
43
44fn main() {
45 println!("K-Means clustering example:");
46
47 const SAMPLES_PER_CENTROID: usize = 2000;
48
49 println!("Generating {0} samples from each centroids:",
50 SAMPLES_PER_CENTROID);
51 let centroids = Matrix::new(2, 2, vec![-0.5, -0.5, 0.0, 0.5]);
53 println!("{}", centroids);
54
55 let samples = generate_data(¢roids, SAMPLES_PER_CENTROID, 0.4);
57
58 let mut model = KMeansClassifier::new(2);
60
61 println!("Training the model...");
63 model.train(&samples).unwrap();
65
66 let centroids = model.centroids().as_ref().unwrap();
67 println!("Model Centroids:\n{:.3}", centroids);
68
69 println!("Classifying the samples...");
71 let classes = model.predict(&samples).unwrap();
72 let (first, second): (Vec<usize>, Vec<usize>) = classes.data().iter().partition(|&x| *x == 0);
73
74 println!("Samples closest to first centroid: {}", first.len());
75 println!("Samples closest to second centroid: {}", second.len());
76}