1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
use std::error::Error;

use nalgebra::{DMatrix, DVector};
use rand::{rngs::StdRng, Rng, SeedableRng};
use rayon::prelude::*;

use crate::{
    data::dataset::{Dataset, RealNumber},
    metrics::errors::RegressionMetrics,
    trees::{params::TreeParams, regressor::DecisionTreeRegressor},
};

use super::params::ForestParams;

#[derive(Clone, Debug)]
pub struct RandomForestRegressor<T: RealNumber> {
    forest_params: ForestParams<DecisionTreeRegressor<T>>,
    tree_params: TreeParams,
}

impl<T: RealNumber> Default for RandomForestRegressor<T> {
    /// Creates a new `RandomForestRegressor` with default parameters.
    ///
    /// # Returns
    ///
    /// A new instance of the `RandomForestRegressor`.
    fn default() -> Self {
        Self::new()
    }
}

impl<T: RealNumber> RegressionMetrics<T> for RandomForestRegressor<T> {}

impl<T: RealNumber> RandomForestRegressor<T> {
    /// Creates a new `RandomForestRegressor` with default parameters.
    ///
    /// # Returns
    ///
    /// A new instance of the `RandomForestRegressor`.
    pub fn new() -> Self {
        Self {
            forest_params: ForestParams::new(),
            tree_params: TreeParams::new(),
        }
    }

    /// Creates a new `RandomForestRegressor` with the specified parameters.
    ///
    /// # Arguments
    ///
    /// * `num_trees` - The number of trees in the random forest. If not specified, the default value is 3.
    /// * `min_samples_split` - The minimum number of samples required to split an internal node. If not specified, the default value is 2.
    /// * `max_depth` - The maximum depth of the decision trees. If not specified, there is no maximum depth.
    /// * `sample_size` - The size of the random subsets of the training data used to train each tree. If not specified, the default value is calculated as the total number of samples divided by the number of trees.
    ///
    /// # Returns
    ///
    /// A `Result` containing the `RandomForestRegressor` if the parameters are valid, or a `Box<dyn Error>` if an error occurs.
    pub fn with_params(
        num_trees: Option<usize>,
        min_samples_split: Option<u16>,
        max_depth: Option<u16>,
        sample_size: Option<usize>,
    ) -> Result<Self, Box<dyn Error>> {
        let mut forest = Self::new();

        forest.set_num_trees(num_trees.unwrap_or(3))?;
        forest.set_sample_size(sample_size)?;
        forest.set_min_samples_split(min_samples_split.unwrap_or(2))?;
        forest.set_max_depth(max_depth)?;
        Ok(forest)
    }

    /// Sets the decision trees for the random forest regressor.
    ///
    /// # Arguments
    ///
    /// * `trees` - A vector of `DecisionTreeRegressor` instances.
    pub fn set_trees(&mut self, trees: Vec<DecisionTreeRegressor<T>>) {
        self.forest_params.set_trees(trees);
    }

    /// Sets the number of trees in the random forest regressor.
    ///
    /// # Arguments
    ///
    /// * `num_trees` - The number of trees.
    ///
    /// # Returns
    ///
    /// Returns `Ok(())` if successful, otherwise returns an error.
    pub fn set_num_trees(&mut self, num_trees: usize) -> Result<(), Box<dyn Error>> {
        self.forest_params.set_num_trees(num_trees)
    }

    /// Sets the sample size for each tree in the random forest regressor.
    ///
    /// # Arguments
    ///
    /// * `sample_size` - The sample size for each tree. Use `None` for full sample size.
    ///
    /// # Returns
    ///
    /// Returns `Ok(())` if successful, otherwise returns an error.
    pub fn set_sample_size(&mut self, sample_size: Option<usize>) -> Result<(), Box<dyn Error>> {
        self.forest_params.set_sample_size(sample_size)
    }

    /// Sets the minimum number of samples required to split an internal node in each decision tree.
    ///
    /// # Arguments
    ///
    /// * `min_samples_split` - The minimum number of samples required to split an internal node.
    ///
    /// # Returns
    ///
    /// Returns `Ok(())` if successful, otherwise returns an error.
    pub fn set_min_samples_split(&mut self, min_samples_split: u16) -> Result<(), Box<dyn Error>> {
        self.tree_params.set_min_samples_split(min_samples_split)
    }

    /// Sets the maximum depth of each decision tree in the random forest regressor.
    ///
    /// # Arguments
    ///
    /// * `max_depth` - The maximum depth of each decision tree. Use `None` for unlimited depth.
    ///
    /// # Returns
    ///
    /// Returns `Ok(())` if successful, otherwise returns an error.
    pub fn set_max_depth(&mut self, max_depth: Option<u16>) -> Result<(), Box<dyn Error>> {
        self.tree_params.set_max_depth(max_depth)
    }

    /// Returns a reference to the decision trees in the random forest regressor.
    pub fn trees(&self) -> &Vec<DecisionTreeRegressor<T>> {
        self.forest_params.trees()
    }

    /// Returns the number of trees in the random forest regressor.
    pub fn num_trees(&self) -> usize {
        self.forest_params.num_trees()
    }

    /// Returns the sample size for each tree in the random forest regressor.
    pub fn sample_size(&self) -> Option<usize> {
        self.forest_params.sample_size()
    }

    /// Returns the minimum number of samples required to split an internal node in each decision tree.
    pub fn min_samples_split(&self) -> u16 {
        self.tree_params.min_samples_split()
    }

    /// Returns the maximum depth of each decision tree in the random forest regressor.
    pub fn max_depth(&self) -> Option<u16> {
        self.tree_params.max_depth()
    }

    /// Fits the random forest regressor to the given dataset.
    ///
    /// # Arguments
    ///
    /// * `dataset` - The dataset to fit the random forest regressor to.
    /// * `seed` - The seed for the random number generator. Use `None` for a random seed.
    ///
    /// # Returns
    ///
    /// Returns a string indicating the completion of the fitting process if successful, otherwise returns an error.
    pub fn fit(
        &mut self,
        dataset: &Dataset<T, T>,
        seed: Option<u64>,
    ) -> Result<String, Box<dyn Error>> {
        let mut rng = match seed {
            Some(seed) => StdRng::seed_from_u64(seed),
            _ => StdRng::from_entropy(),
        };

        let seeds = (0..self.num_trees())
            .map(|_| rng.gen::<u64>())
            .collect::<Vec<_>>();

        match self.sample_size() {
            Some(sample_size) if sample_size > dataset.x.nrows() => {
                return Err("The set sample size is greater than the dataset size.".into())
            }
            None => self.set_sample_size(Some(dataset.x.nrows() / self.num_trees()))?,
            _ => {}
        }
        let trees: Result<Vec<_>, String> = seeds
            .into_par_iter()
            .map(|tree_seed| {
                let subset = dataset.samples(self.sample_size().unwrap(), Some(tree_seed));
                let mut tree = DecisionTreeRegressor::with_params(
                    Some(self.min_samples_split()),
                    self.max_depth(),
                )
                .map_err(|error| error.to_string())?;
                tree.fit(&subset).map_err(|error| error.to_string())?;
                Ok(tree)
            })
            .collect();
        self.set_trees(trees?);
        Ok("Finished building the trees.".into())
    }

    /// Predicts the target values for the given features using the random forest regressor.
    ///
    /// # Arguments
    ///
    /// * `features` - The features to predict the target values for.
    ///
    /// # Returns
    ///
    /// Returns a vector of predicted target values if successful, otherwise returns an error.
    pub fn predict(&self, features: &DMatrix<T>) -> Result<DVector<T>, Box<dyn Error>> {
        let mut predictions = DVector::from_element(features.nrows(), T::from_f64(0.0).unwrap());

        for i in 0..features.nrows() {
            let mut total_prediction = T::from_f64(0.0).unwrap();
            for tree in self.trees() {
                let prediction = tree.predict(&DMatrix::from_row_slice(
                    1,
                    features.ncols(),
                    features.row(i).transpose().as_slice(),
                ))?;
                total_prediction += prediction[0];
            }

            predictions[i] = total_prediction / T::from_usize(self.trees().len()).unwrap();
        }
        Ok(predictions)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use nalgebra::{DMatrix, DVector};

    // Helper function to create a small mock dataset
    fn create_mock_dataset() -> Dataset<f64, f64> {
        let x = DMatrix::from_row_slice(
            6,
            2,
            &[1.0, 2.0, 1.1, 2.1, 1.2, 2.2, 3.0, 4.0, 3.1, 4.1, 3.2, 4.2],
        );
        let y = DVector::from_vec(vec![0.5, 0.5, 0.5, 1.5, 1.5, 1.5]);
        Dataset::new(x, y)
    }

    #[test]
    fn test_default() {
        let forest = RandomForestRegressor::<f64>::default();
        assert_eq!(forest.num_trees(), 3); // Default number of trees
        assert_eq!(forest.min_samples_split(), 2); // Default min_samples_split
    }

    #[test]
    fn test_with_params() {
        let forest = RandomForestRegressor::<f64>::with_params(
            Some(10),  // num_trees
            Some(4),   // min_samples_split
            Some(5),   // max_depth
            Some(100), // sample_size
        )
        .unwrap();
        assert_eq!(forest.num_trees(), 10);
        assert_eq!(forest.min_samples_split(), 4);
        assert_eq!(forest.max_depth(), Some(5));
        assert_eq!(forest.sample_size(), Some(100));
    }

    #[test]
    fn test_fit() {
        let mut forest = RandomForestRegressor::<f64>::new();
        let dataset = create_mock_dataset();
        let fit_result = forest.fit(&dataset, Some(42)); // Using a fixed seed for reproducibility
        assert!(fit_result.is_ok());
        assert_eq!(forest.trees().len(), 3); // Should have 3 trees after fitting
    }

    // #[test]
    // fn test_predict() {
    //     let mut forest = RandomForestRegressor::<f64>::new();
    //     let dataset = create_mock_dataset();
    //     forest.fit(&dataset, Some(42)).unwrap();

    //     let features = DMatrix::from_row_slice(
    //         2,
    //         2,
    //         &[
    //             1.0, 2.0, // Should be close to class 0.5
    //             3.0, 4.0, // Should be close to class 1.5
    //         ],
    //     );
    //     let predictions = forest.predict(&features).unwrap();
    //     assert!((predictions[0] - 0.5).abs() < 0.1);
    //     assert!((predictions[1] - 1.5).abs() < 0.1);
    // }
}