1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
use crate::data::dataset::{Dataset, Number, WholeNumber};
use crate::trees::classifier::DecisionTreeClassifier;
use crate::trees::params::TreeClassifierParams;
use nalgebra::{DMatrix, DVector};
use rand::rngs::StdRng;
use rand::{Rng, SeedableRng};
use rayon::prelude::*;
use std::collections::HashMap;
use std::error::Error;
use super::params::ForestParams;
#[derive(Clone, Debug)]
pub struct RandomForestClassifier<XT: Number, YT: WholeNumber> {
forest_params: ForestParams<DecisionTreeClassifier<XT, YT>>,
tree_params: TreeClassifierParams,
}
impl<XT: Number, YT: WholeNumber> Default for RandomForestClassifier<XT, YT> {
fn default() -> Self {
Self::new()
}
}
/// This module contains the implementation of the `RandomForestClassifier` struct.
///
/// The `RandomForestClassifier` is a machine learning algorithm that combines multiple decision trees to make predictions.
/// It is used for classification tasks where the input features are of type `XT` and the target labels are of type `YT`.
///
/// # Example
///
/// ```rust
/// use rusty_ai::forests::classifier::RandomForestClassifier;
/// use rusty_ai::data::dataset::Dataset;
/// use nalgebra::{DMatrix, DVector};
///
/// // Create a mock dataset
/// let x = DMatrix::from_row_slice(
/// 6,
/// 2,
/// &[1.0, 2.0, 1.1, 2.1, 1.2, 2.2, 3.0, 4.0, 3.1, 4.1, 3.2, 4.2],
/// );
/// let y = DVector::from_vec(vec![0, 0, 0, 1, 1, 1]);
/// let dataset = Dataset::new(x, y);
///
/// // Create a random forest classifier with default parameters
/// let mut forest = RandomForestClassifier::<f64, u8>::default();
///
/// // Fit the classifier to the dataset
/// forest.fit(&dataset, Some(42)).unwrap();
///
/// // Make predictions on new features
/// let features = DMatrix::from_row_slice(
/// 2,
/// 2,
/// &[
/// 1.0, 2.0, // Should be classified as class 0
/// 3.0, 4.0, // Should be classified as class 1
/// ],
/// );
/// let predictions = forest.predict(&features).unwrap();
/// println!("Predictions: {:?}", predictions);
/// ```
impl<XT: Number, YT: WholeNumber> RandomForestClassifier<XT, YT> {
/// Creates a new instance of the Random Forest Classifier.
///
/// This function initializes the classifier with empty frequency maps and an empty
/// vector to store the count of unique feature values.
///
/// # Returns
///
/// A new instance of the Random Forest Classifier.
pub fn new() -> Self {
Self {
forest_params: ForestParams::new(),
tree_params: TreeClassifierParams::new(),
}
}
/// Creates a new instance of the Random Forest Classifier with specified parameters.
///
/// # Arguments
///
/// * `num_trees` - The number of trees in the forest. If not specified, defaults to 3.
/// * `min_samples_split` - The minimum number of samples required to split an internal node. If not specified, defaults to 2.
/// * `max_depth` - The maximum depth of the decision trees. If not specified, defaults to None.
/// * `criterion` - The function to measure the quality of a split. If not specified, defaults to "gini".
/// * `sample_size` - The size of the random subsets of the dataset to train each tree. If not specified, defaults to None.
///
/// # Returns
///
/// A `Result` containing the Random Forest Classifier instance or an error.
pub fn with_params(
num_trees: Option<usize>,
min_samples_split: Option<u16>,
max_depth: Option<u16>,
criterion: Option<String>,
sample_size: Option<usize>,
) -> Result<Self, Box<dyn Error>> {
let mut forest = Self::new();
forest.set_num_trees(num_trees.unwrap_or(3))?;
forest.set_sample_size(sample_size)?;
forest.set_min_samples_split(min_samples_split.unwrap_or(2))?;
forest.set_max_depth(max_depth)?;
forest.set_criterion(criterion.unwrap_or("gini".to_string()))?;
Ok(forest)
}
/// Sets the decision trees of the random forest.
///
/// # Arguments
///
/// * `trees` - A vector of DecisionTreeClassifier instances.
pub fn set_trees(&mut self, trees: Vec<DecisionTreeClassifier<XT, YT>>) {
self.forest_params.set_trees(trees);
}
/// Sets the number of trees in the random forest.
///
/// # Arguments
///
/// * `num_trees` - The number of trees.
///
/// # Returns
///
/// A `Result` indicating success or an error.
pub fn set_num_trees(&mut self, num_trees: usize) -> Result<(), Box<dyn Error>> {
self.forest_params.set_num_trees(num_trees)
}
/// Sets the sample size for each tree in the random forest.
///
/// # Arguments
///
/// * `sample_size` - The sample size.
///
/// # Returns
///
/// A `Result` indicating success or an error.
pub fn set_sample_size(&mut self, sample_size: Option<usize>) -> Result<(), Box<dyn Error>> {
self.forest_params.set_sample_size(sample_size)
}
/// Sets the minimum number of samples required to split an internal node in each decision tree.
///
/// # Arguments
///
/// * `min_samples_split` - The minimum number of samples.
///
/// # Returns
///
/// A `Result` indicating success or an error.
pub fn set_min_samples_split(&mut self, min_samples_split: u16) -> Result<(), Box<dyn Error>> {
self.tree_params.set_min_samples_split(min_samples_split)
}
/// Sets the maximum depth of each decision tree in the random forest.
///
/// # Arguments
///
/// * `max_depth` - The maximum depth.
///
/// # Returns
///
/// A `Result` indicating success or an error.
pub fn set_max_depth(&mut self, max_depth: Option<u16>) -> Result<(), Box<dyn Error>> {
self.tree_params.set_max_depth(max_depth)
}
/// Sets the criterion function to measure the quality of a split in each decision tree.
///
/// # Arguments
///
/// * `criterion` - The criterion function.
///
/// # Returns
///
/// A `Result` indicating success or an error.
pub fn set_criterion(&mut self, criterion: String) -> Result<(), Box<dyn Error>> {
self.tree_params.set_criterion(criterion)
}
/// Returns a reference to the decision trees in the random forest.
pub fn trees(&self) -> &Vec<DecisionTreeClassifier<XT, YT>> {
self.forest_params.trees()
}
/// Returns the number of trees in the random forest.
pub fn num_trees(&self) -> usize {
self.forest_params.num_trees()
}
/// Returns the sample size for each tree in the random forest.
pub fn sample_size(&self) -> Option<usize> {
self.forest_params.sample_size()
}
/// Returns the minimum number of samples required to split an internal node in each decision tree.
pub fn min_samples_split(&self) -> u16 {
self.tree_params.min_samples_split()
}
/// Returns the maximum depth of each decision tree in the random forest.
pub fn max_depth(&self) -> Option<u16> {
self.tree_params.max_depth()
}
/// Returns a reference to the criterion function used to measure the quality of a split in each decision tree.
pub fn criterion(&self) -> &String {
&self.tree_params.criterion
}
/// Fits the random forest to the given dataset.
///
/// # Arguments
///
/// * `dataset` - The dataset to fit the random forest to.
/// * `seed` - The seed for the random number generator used to generate random subsets of the dataset. If not specified, a random seed will be used.
///
/// # Returns
///
/// A `Result` indicating whether the fitting process was successful or an error occurred.
pub fn fit(
&mut self,
dataset: &Dataset<XT, YT>,
seed: Option<u64>,
) -> Result<String, Box<dyn Error>> {
let mut rng = match seed {
Some(seed) => StdRng::seed_from_u64(seed),
_ => StdRng::from_entropy(),
};
let seeds = (0..self.num_trees())
.map(|_| rng.gen::<u64>())
.collect::<Vec<_>>();
match self.sample_size() {
Some(sample_size) if sample_size > dataset.nrows() => {
return Err(format!(
"The set sample size is greater than the dataset size. {} > {}",
sample_size,
dataset.nrows()
)
.into());
}
None => self.set_sample_size(Some(dataset.nrows() / self.num_trees()))?,
_ => {}
}
let trees: Result<Vec<_>, String> = seeds
.into_par_iter()
.map(|tree_seed| {
let subset = dataset.samples(self.sample_size().unwrap(), Some(tree_seed));
let mut tree = DecisionTreeClassifier::with_params(
Some(self.criterion().clone()),
Some(self.min_samples_split()),
self.max_depth(),
)
.map_err(|error| error.to_string())?;
tree.fit(&subset).map_err(|error| error.to_string())?;
Ok(tree)
})
.collect();
self.set_trees(trees?);
Ok("Finished building the trees".into())
}
/// Predicts the class labels for the given features using the random forest.
///
/// # Arguments
///
/// * `features` - The features to predict the class labels for.
///
/// # Returns
///
/// A `Result` containing a vector of predicted class labels or an error if the prediction
/// process fails.
pub fn predict(&self, features: &DMatrix<XT>) -> Result<DVector<YT>, Box<dyn Error>> {
let mut predictions = DVector::from_element(features.nrows(), YT::from_u8(0).unwrap());
for i in 0..features.nrows() {
let mut class_counts = HashMap::new();
for tree in self.trees() {
let prediction = tree
.predict(&DMatrix::from_row_slice(
1,
features.ncols(),
features.row(i).transpose().as_slice(),
))
.map_err(|error| error.to_string())?;
*class_counts.entry(prediction[0]).or_insert(0) += 1;
}
let chosen_class = class_counts
.into_iter()
.max_by_key(|&(_, count)| count)
.map(|(class, _)| class)
.ok_or(
"Prediction failure. No trees built or class counts are empty.".to_string(),
)?;
predictions[i] = chosen_class;
}
Ok(predictions)
}
}
#[cfg(test)]
mod tests {
use super::*;
fn create_mock_dataset() -> Dataset<f64, u8> {
let x = DMatrix::from_row_slice(
6,
2,
&[1.0, 2.0, 1.1, 2.1, 1.2, 2.2, 3.0, 4.0, 3.1, 4.1, 3.2, 4.2],
);
let y = DVector::from_vec(vec![0, 0, 0, 1, 1, 1]);
Dataset::new(x, y)
}
#[test]
fn test_default() {
let forest = RandomForestClassifier::<f64, u8>::default();
assert_eq!(forest.num_trees(), 3); // Default number of trees
assert_eq!(forest.min_samples_split(), 2); // Default min_samples_split
}
#[test]
fn test_new() {
let forest = RandomForestClassifier::<f64, u8>::new();
assert_eq!(forest.num_trees(), 3); // Default number of trees
assert_eq!(forest.min_samples_split(), 2); // Default min_samples_split
}
#[test]
fn test_with_params() {
let forest = RandomForestClassifier::<f64, u8>::with_params(
Some(10), // num_trees
Some(4), // min_samples_split
Some(5), // max_depth
Some("entropy".to_string()), // criterion
Some(100), // sample_size
)
.unwrap();
assert_eq!(forest.num_trees(), 10);
assert_eq!(forest.min_samples_split(), 4);
assert_eq!(forest.max_depth(), Some(5));
assert_eq!(forest.criterion(), "entropy");
assert_eq!(forest.sample_size(), Some(100));
}
#[test]
fn test_too_low_sample_size() {
let forest = RandomForestClassifier::<f64, u8>::new().set_sample_size(Some(0));
assert!(forest.is_err());
assert_eq!(
forest.unwrap_err().to_string(),
"The sample size must be greater than 0."
);
}
#[test]
fn test_too_low_num_trees() {
let forest = RandomForestClassifier::<f64, u8>::new().set_num_trees(1);
assert!(forest.is_err());
assert_eq!(
forest.unwrap_err().to_string(),
"The number of trees must be greater than 1."
);
}
#[test]
fn test_fit() {
let mut forest = RandomForestClassifier::<f64, u8>::new();
let dataset = create_mock_dataset();
let fit_result = forest.fit(&dataset, Some(42)); // Using a fixed seed for reproducibility
assert!(fit_result.is_ok());
assert_eq!(forest.trees().len(), 3); // Should have 3 trees after fitting
}
#[test]
fn test_fit_too_many_samples() {
let mut forest = RandomForestClassifier::<f64, u8>::new();
let _ = forest.set_sample_size(Some(1000));
let dataset = create_mock_dataset();
let fit_result = forest.fit(&dataset, Some(42)); // Using a fixed seed for reproducibility
assert!(fit_result.is_err());
assert_eq!(
fit_result.unwrap_err().to_string(),
"The set sample size is greater than the dataset size. 1000 > 6"
);
}
#[test]
fn test_predict() {
let mut forest = RandomForestClassifier::<f64, u8>::new();
let _ = forest.set_sample_size(Some(3));
let dataset = create_mock_dataset();
forest.fit(&dataset, Some(42)).unwrap();
let features = DMatrix::from_row_slice(
2,
2,
&[
1.0, 2.0, // Should be classified as class 0
3.0, 4.0, // Should be classified as class 1
],
);
let predictions = forest.predict(&features).unwrap();
assert_eq!(predictions, DVector::from_vec(vec![0, 1]));
}
}